A variational principle for domino tilings

Journal of the American Mathematical Society - Tập 14 Số 2 - Trang 297-346
Henry Cohn1,2, Richard Kenyon3, James Propp4
1Department of Mathematics, Harvard University, Cambridge, Massachusetts, 02138
2Microsoft Research, One Microsoft Way, Redmond, Washington 98052-6399
3CNRS UMR 8628, Laboratoire de Topologie, Bâtiment 425, Université Paris-11, 91405 Orsay, France
4Department of Mathematics, University of Wisconsin, Madison, Wisconsin, 53706

Tóm tắt

We formulate and prove a variational principle (in the sense of thermodynamics) for random domino tilings, or equivalently for the dimer model on a square grid. This principle states that a typical tiling of an arbitrary finite region can be described by a function that maximizes an entropy integral. We associate an entropy to every sort of local behavior domino tilings can exhibit, and prove that almost all tilings lie within ε \varepsilon (for an appropriate metric) of the unique entropy-maximizing solution. This gives a solution to the dimer problem with fully general boundary conditions, thereby resolving an issue first raised by Kasteleyn. Our methods also apply to dimer models on other grids and their associated tiling models, such as tilings of the plane by three orientations of unit lozenges.

Từ khóa


Tài liệu tham khảo

Blöte, H. W. J., 1982, Roughening transitions and the zero-temperature triangular Ising antiferromagnet, J. Phys. A, 15, L631--L637

Burton, Robert, 1993, Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances, Ann. Probab., 21, 1329

Cohn, Henry, 1996, Local statistics for random domino tilings of the Aztec diamond, Duke Math. J., 85, 117, 10.1215/S0012-7094-96-08506-3

Cohn, Henry, 1998, The shape of a typical boxed plane partition, New York J. Math., 4, 137

Destainville, N., 1997, Configurational entropy of codimension-one tilings and directed membranes, J. Statist. Phys., 87, 697, 10.1007/BF02181243

Nakano, Hidegorô, 1939, Über Abelsche Ringe von Projektionsoperatoren, Proc. Phys.-Math. Soc. Japan (3), 21, 357

Federer, Herbert, 1969, Geometric measure theory

Fournier, Jean-Claude, 1995, Pavage des figures planes sans trous par des dominos: fondement graphique de l’algorithme de Thurston et parallélisation, C. R. Acad. Sci. Paris S\'{e}r. I Math., 320, 107, 10.1016/0304-3975(95)00204-9

Gilbarg, David, 1977, Elliptic partial differential equations of second order, 10.1007/978-3-642-96379-7

[GP]GP D. Gupta and J. Propp, work in preparation.

[H]H M. Höffe, Zufallsparkettierungen und Dimermodelle, Thesis, Institut für Theoretische Physik der Eberhard-Karls-Universität, Tübingen, September 1997.

Jaekel, M. T., 1984, Inversion relations and disorder solutions on Potts models, J. Phys. A, 17, 2079, 10.1088/0305-4470/17/10/020

[JPS]JPS W. Jockusch, J. Propp, and P. Shor, Random domino tilings and the arctic circle theorem, preprint, 1995.

[Ka1]Kast1 P. W. Kasteleyn, The statistics of dimers on a lattice, I. The number of dimer arrangements on a quadratic lattice, Physica 27 (1961), 1209–1225.

Kasteleyn, P. W., 1963, Dimer statistics and phase transitions, J. Mathematical Phys., 4, 287, 10.1063/1.1703953

Kenyon, Claire, 1996, Perfect matchings in the triangular lattice, Discrete Math., 152, 191, 10.1016/0012-365X(94)00304-2

Kenyon, Richard, 1997, Local statistics of lattice dimers, Ann. Inst. H. Poincar\'{e} Probab. Statist., 33, 591, 10.1016/S0246-0203(97)80106-9

[Ke2]Kenyon2 R. Kenyon, The planar dimer model with boundary: a survey, CRM Proceedings and Lecture Notes, to appear.

Levitov, L. S., 1990, Equivalence of the dimer resonating-valence-bond problem to the quantum roughening problem, Phys. Rev. Lett., 64, 92, 10.1103/PhysRevLett.64.92

Maillard, J.-M., 1985, 𝒮₄-symmetry on the checkerboard Potts model, J. Phys. A, 18, 833, 10.1088/0305-4470/18/5/016

[M]Mil J. Milnor, Volumes of hyperbolic three-manifolds, Chapter 7 in lecture notes of W. P. Thurston, The Geometry and Topology of Three-manifolds, Princeton, 1978.

[P1]P1 J. Propp, Lattice structure for orientations of graphs, preprint, 1993.

Propp, James, 1997, Boundary-dependent local behavior for 2-D dimer models, Internat. J. Modern Phys. B, 11, 183, 10.1142/S0217979297000241

Propp, James Gary, 1996, Exact sampling with coupled Markov chains and applications to statistical mechanics, Random Structures Algorithms, 9, 223, 10.1002/(SICI)1098-2418(199608/09)9:1/2<223::AID-RSA14>3.3.CO;2-R

Rudin, Walter, 1987, Real and complex analysis, 3

Saldanha, N. C., 1995, Spaces of domino tilings, Discrete Comput. Geom., 14, 207, 10.1007/BF02570703

Temperley, H. N. V., 1961, Dimer problem in statistical mechanics—an exact result, Philos. Mag. (8), 6, 1061, 10.1080/14786436108243366

Thurston, William P., 1990, Conway’s tiling groups, Amer. Math. Monthly, 97, 757, 10.2307/2324578