A variational approach to the Navier–Stokes equations

Bulletin des Sciences Mathématiques - Tập 136 - Trang 256-276 - 2012
Nicola Gigli1, Sunra J.N. Mosconi2
1Université de Nice France
2Università di Catania, Italy

Tài liệu tham khảo

Blunck, 2001, Maximal regularity of discrete and continuous time evolution equations, Studia Math., 146, 157, 10.4064/sm146-2-3 Caffarelli, 1982, Partial regularity of suitable weak solutions of the Navier–Stokes equations, Comm. Pure Appl. Math., 35, 771, 10.1002/cpa.3160350604 DiPerna, 1989, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98, 511, 10.1007/BF01393835 Galdi, 2000, An introduction to the Navier–Stokes initial boundary value problem, vol. 1 Giga, 1981, The Stokes operator in Lr spaces, Proc. Japan Acad., 57, 85, 10.3792/pjaa.57.85 Kunstmann, 2004, Maximal Lp regularity for parabolic equations, Fourier multiplier theorems and H∞-functional calculus, vol. 1855 Pironneau, 1981, On the transport–diffusion algorithm and its applications to the Navier–Stokes equations, Numer. Math., 38, 309, 10.1007/BF01396435 Sohr, 1986, On the regularity of the pressure of weak solutions of Navier–Stokes equations, Arch. Math., 46, 428, 10.1007/BF01210782 Solonnikov, 1977, Estimates for solutions of nonstationary Navier–Stokes equations, J. Soviet Math., 8, 467, 10.1007/BF01084616 Temam, 1977