A user’s guide to PDE models for chemotaxis

Thomas Hillen1, Kevin J. Painter2
1Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Canada
2Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Allegretto W., Xie H., Yang S.: Properties of solutions for a chemotaxis system. J. Math. Biol. 35, 949–966 (1997)

Alt W.: Biased random walk model for chemotaxis and related diffusion approximation. J. Math. Biol. 9, 147–177 (1980)

Alt W., Lauffenburger D.A.: Transient behavior of a chemotaxis system modelling certain types of tissue inflammation. J. Math. Biol. 24(6), 691–722 (1987)

Baker M.D., Wolanin P.M., Stock J.B.: Signal transduction in bacterial chemotaxis. Bioessays 28(1), 9–22 (2006)

Balding D., McElwain D.L.: A mathematical model of tumour-induced capillary growth. J. Theor. Biol. 114(1), 53–73 (1985)

Biler P.: Local and global solvability of some parabolic systems modelling chemotaxis. Adv. Math. Sci. Appl. 8(2), 715–743 (1998)

Biler P.: Global solutions to some parabolic-elliptic systems of chemotaxis. Adv. Math. Sci. Appl. 9(1), 347–359 (1999)

Boon J.P., Herpigny B.: Model for chemotactic bacterial bands. Bull. Math. Biol. 48(1), 1–19 (1986)

Budd C.J., Carretero-Gonzd́flez R., Russell R.D.: Precise computations of chemotactic collapse using moving mesh methods. J. Comput. Phys. 202(2), 463–487 (2005)

Budick S.A., Dickinson M.H.: Free-flight responses of Drosophila melanogaster to attractive odors. J. Exp. Biol. 209(15), 3001–3017 (2006)

Budrene E.O., Berg H.C.: Complex patterns formed by motile cells of Escherichia coli. Nature 349(6310), 630–633 (1991)

Budrene E.O., Berg H.C.: Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376(6535), 49–53 (1995)

Burger, M., Di Francesco, M., Dolak-Struss, Y.: The Keller-Segel model for chemotaxis: linear vs. nonlinear diffusion. SIAM J. Math. Anal. (2008) (to appear)

Byrne H.M., Cave G., McElwain D.L.: The effect of chemotaxis and chemokinesis on leukocyte locomotion: a new interpretation of experimental results. IMA J. Math. Appl. Med. Biol. 15(3), 235–256 (1998)

Byrne H.M., Owen M.R.: A new interpretation of the Keller–Segel model based on multiphase modelling. J. Math. Biol. 49, 604–626 (2004)

Chaplain M.A.: Mathematical modelling of angiogenesis. J. Neurooncol. 50(1–2), 37–51 (2000)

Chaplain M.A.J., Stuart A.M.: A model mechanism for the chemotactic response of endothelial cells to tumor angiogenesis factor. IMA J. Math. Appl. Med. Biol. 10, 149–168 (1993)

Childress S., Percus J.K.: Nonlinear aspects of chemotaxis. Math. Biosci. 56, 217–237 (1981)

Condeelis J., Singer R.H., Segall J.E.: The great escape: when cancer cells hijack the genes for chemotaxis and motility. Annu. Rev. Cell Dev. Biol. 21, 695–718 (2005)

Corrias L., Perthame B., Zaag H.: Global solutions of some chemotaxis and angiogenesis systems in high space dimensions. Milan J. Math. 72, 1–28 (2004)

Dahlquist F.W., Lovely P., Koshland D.E.: Quantitative analysis of bacterial migration in chemotaxis. Nat. New Biol. 236, 120–123 (1972)

Dallon J.C., Othmer H.G.: A discrete cell model with adaptive signalling for aggregation of dictyostelium discoideum. Philos. Trans. R. Soc. B 352, 391–417 (1997)

Dkhil F.: Singular limit of a degenerate chemotaxis-fisher equation. Hiroshima Math. J. 34, 101–115 (2004)

Dolak Y., Hillen T.: Cattaneo models for chemotaxis, numerical solution and pattern formation. J. Math. Biol. 46(2), 153–170 (2003)

Dolak Y., Schmeiser C.: The Keller-Segel model with logistic sensitivity function and small diffusivity. SIAM J. Appl. Math. 66, 286–308 (2005)

Dormann D., Weijer C.J.: Chemotactic cell movement during Dictyostelium development and gastrulation. Curr. Opin. Genet. Dev. 16(4), 367–373 (2006)

Eberl H.J., Parker D.F., van Loosdrecht M.C.M.: A new deterministic spatio-temporal continuum model for biofilm development. J. Theor. Med. 3(3), 161–175 (2001)

Eisenbach M.: Chemotaxis. Imperial College Press, London (2004)

Ford R.M., Lauffenburger D.A.: Measurement of bacterial random motility and chemotaxis coefficients: II. application of single cell based mathematical model. Biotechnol. Bioeng. 37, 661–672 (1991)

Gajewski H., Zacharias K.: Global behavior of a reaction-diffusion system modelling chemotaxis. Math. Nachr. 159, 77–114 (1998)

Gueron S., Liron N.: A model of herd grazing as a travelling wave, chemotaxis and stability. J. Math. Biol. 27(5), 595–608 (1989)

Henry M., Hilhorst D., Schätzle R.: Convergence to a viscocity solution for an advection- reaction-diffusion equation arising from a chemotaxis-growth model. Hiroshima Math. J. 29, 591–630 (1999)

Hildebrand E., Kaupp U.B.: Sperm chemotaxis: a primer. Ann. N. Y. Acad. Sci. 1061, 221–225 (2005)

Hillen T.: A classification of spikes and plateaus. SIAM Rev. 49(1), 35–51 (2007)

Hillen T., Othmer H.G.: The diffusion limit of transport equations derived from velocity jump processes. SIAM J. Appl. Math. 61(3), 751–775 (2000)

Hillen T., Painter K.: Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math. 26, 280–301 (2001)

Hillen T., Painter K., Schmeiser C.: Global existence for chemotaxis with finite sampling radius. Discr. Cont. Dyn. Syst. B 7(1), 125–144 (2007)

Höfer T., Sherratt J.A., Maini P.K.: Dictyostelium discoideum: cellular self-organisation in an excitable biological medium. Proc. R. Soc. Lond. B. 259, 249–257 (1995)

Horstmann D.: Lyapunov functions and L p -estimates for a class of reaction-diffusion systems. Coll. Math. 87, 113–127 (2001)

Horstmann D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences I. Jahresberichte DMV 105(3), 103–165 (2003)

Horstmann D., Stevens A.: A constructive approach to traveling waves in chemotaxis. J. Nonlin. Sci. 14(1), 1–25 (2004)

Jabbarzadeh E., Abrams C.F.: Chemotaxis and random motility in unsteady chemoattractant fields: a computational study. J. Theor. Biol. 235(2), 221–232 (2005)

Kareiva P., Odell G.: Swarms of predators exhibit ’prey-taxis’ if individual predators use area-restricted search. Am. Nat. 130(2), 233–270 (1987)

Keller E.F., Segel L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

Keller E.F., Segel L.A.: Model for chemotaxis. J. Theor. Biol. 30, 225–234 (1971)

Keller E.F., Segel L.A.: Traveling bands of chemotactic bacteria: a theoretical analysis. J. Theor. Biol. 30, 377–380 (1971)

Kennedy J.S., Marsh D.: Pheromone-regulated anemotaxis in flying moths. Science 184, 999–1001 (1974)

Kim I.C.: Limits of chemotaxis growth model. Nonlinear Anal. 46, 817–834 (2001)

Kolokolnikov T., Erneux T., Wei J.: Mesa-type patterns in the one-dimensional Brusselator and their stability. Physica D 214, 63–77 (2006)

Kowalczyk R.: Preventing blow-up in a chemotaxis model. J. Math. Anal. Appl. 305, 566–588 (2005)

Kuiper H.: A priori bounds and global existence for a strongly coupled quasilinear parabolic system modelling chemotaxis. Electron. J. Differ. Equ. 52, 1–18 (2001)

Kuiper H., Dung L.: Global attractors for cross-diffusion systems on domains of arbitrary dimensions. Rocky Mountain J. Math. 37(5), 1645–1668 (2007)

Landman K.A., Pettet G.J., Newgreen D.F.: Chemotactic cellular migration: smooth and discontinuous travelling wave solutions. SIAM J. Appl. Math. 63(5), 1666–1681 (2003)

Landman K.A., Pettet G.J., Newgreen D.F.: Mathematical models of cell colonization of uniformly growing domains. Bull. Math. Biol. 65(2), 235–262 (2003)

Lapidus I.R., Schiller R.: Model for the chemotactic response of a bacterial population. Biophys. J 16(7), 779–789 (1976)

Larrivee B., Karsan A.: Signaling pathways induced by vascular endothelial growth factor (review). Int. J. Mol. Med. 5(5), 447–456 (2000)

Lauffenburger D.A., Kennedy C.R.: Localized bacterial infection in a distributed model for tissue inflammation. J. Math. Biol. 16(2), 141–163 (1983)

Lee, J.M., Hillen, T., Lewis, M.A.: Continuous travelling waves for prey-taxis. Bull. Math. Biol. (2007) (in review)

Levine H.A., Sleeman B.D.: A system of reaction diffusion equations arising in the theory of reinforced random walks. SIAM J. Appl. Math. 57, 683–730 (1997)

Logan J.A., White B.J., Bentz P., Powell J.A.: Model analysis of spatial patterns in Mountain Pine Beetle outbreaks. Theor. Popul. Biol. 53(3), 236–255 (1998)

Luca M., Chavez-Ross A., Edelstein-Keshet L., Mogilner A.: Chemotactic signaling, microglia, and Alzheimer’s disease senile plaques: is there a connection? Bull. Math. Biol. 65(4), 693–730 (2003)

Maini P.K., Myerscough M.R., Winters K.H., Murray J.D.: Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern generation. Bull. Math. Biol. 53(5), 701–719 (1991)

Mantzaris N.V., Webb S., Othmer H.G.: Mathematical modeling of tumor-induced angiogenesis. J. Math. Biol. 49(2), 111–187 (2004)

Maree A.F., Hogeweg P.: How amoeboids self-organize into a fruiting body: multicellular coordination in Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA 98(7), 3879–3883 (2001)

Mimura M., Tsujikawa T.: Aggregation pattern dynamics in a chemotaxis model including growth. Physica A 230, 499–543 (1996)

Mittal N., Budrene E.O., Brenner M.P., Van Oudenaarden A.: Motility of Escherichia coli cells in clusters formed by chemotactic aggregation. Proc. Natl. Acad. Sci. USA 100(23), 13259–13263 (2003)

Mori I., Ohshima Y.: Molecular neurogenetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans. Bioessays 19(12), 1055–1064 (1997)

Murray J.D.: Mathematical Biology II: Spatial Models and Biochemical Applications, 3rd edn. Springer, New York (2003)

Murray J.D., Myerscough M.R.: Pigmentation pattern formation on snakes. J. Theor. Biol. 149(3), 339–360 (1991)

Myerscough M.R., Maini P.K., Painter K.J.: Pattern formation in a generalized chemotactic model. Bull. Math. Biol. 60(1), 1–26 (1998)

Nagai T., Senba T., Yoshida K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. 40(3), 411–433 (1997)

Nanjundiah V.: Chemotaxis, signal relaying and aggregation morphology. J. Theor. Biol. 42, 63–105 (1973)

Odell G.M., Keller E.F.: Traveling bands of chemotactic bacteria revisited. J. Theor. Biol. 56(1), 243–247 (1976)

Osaki K., Tsujikawa T., Yagi A., Mimura M.: Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal. 51, 119–144 (2002)

Osaki K., Yagi A.: Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkcial. Ekvac. 44, 441–469 (2001)

Othmer H.G., Dunbar S.R., Alt W.: Models of dispersal in biological systems. J. Math. Biol. 26, 263–298 (1988)

Othmer H.G., Hillen T.: The diffusion limit of transport equations II: chemotaxis equations. SIAM J. Appl. Math. 62(4), 1122–1250 (2002)

Othmer H.G., Stevens A.: Aggregation, blowup and collapse: The ABC’s of taxis in reinforced random walks. SIAM J. Appl. Math. 57, 1044–1081 (1997)

Owen M.R., Sherratt J.A.: Pattern formation and spatiotemporal irregularity in a model for macrophage-tumour interactions. J. Theor. Biol. 189(1), 63–80 (1997)

Painter K., Hillen T.: Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Quart. 10(4), 501–543 (2002)

Painter K.J., Maini P.K., Othmer H.G.: Complex spatial patterns in a hybrid chemotaxis reaction-diffusion model. J. Math. Biol. 41(4), 285–314 (2000)

Painter K.J., Maini P.K., Othmer H.G.: Development and applications of a model for cellular response to multiple chemotactic cues. J. Math. Biol. 41(4), 285–314 (2000)

Painter K.J., Othmer H.G., Maini P.K.: Stripe formation in juvenile pomacanthus via chemotactic response to a reaction-diffusion mechanism. Proc. Natl. Acad. Sci. USA 96, 5549–5554 (1999)

Palsson E., Othmer H.G.: A model for individual and collective cell movement in Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA 97(19), 10448–10453 (2000)

Park H.T., Wu J., Rao Y.: Molecular control of neuronal migration. Bioessays 24(9), 821–827 (2002)

Patlak C.S.: Random walk with persistence and external bias. Bull. Math. Biophys. 15, 311–338 (1953)

Perthame B.: Transport Equations in Biology. Birkhäuser, Basel (2007)

Perumpanani A.J., Sherratt J.A., Norbury J., Byrne H.M.: Biological inferences from a mathematical model for malignant invasion. Invas. Metastas. 16(4–5), 209–221 (1996)

Post. K.: A non-linear parabolic system modeling chemotaxis with sensitivity functions (1999)

Potapov A., Hillen T.: Metastability in chemotaxis models. J. Dyn. Diff. Equ. 17, 293–330 (2005)

Rascle M., Ziti C.: Finite time blow up in some models of chemotaxis. J. Math. Biol. 33, 388–414 (1995)

Rivero M.A., Tranquillo R.T., Buettner H.M., Lauffenburger D.A.: Transport models for chemotactic cell populations based on individual cell behavior. Chem. Eng. Sci. 44, 1–17 (1989)

Segel L.A.: Incorporation of receptor kinetics into a model for bacterial chemotaxis. J. Theor. Biol. 57(1), 23–42 (1976)

Segel L.A.: A theoretical study of receptor mechanisms in bacterial chemotaxis. SIAM J. Appl. Math. 32, 653–665 (1977)

Sherratt J.A.: Chemotaxis and chemokinesis in eukaryotic cells: the Keller-Segel equations as an approximation to a detailed model. Bull. Math. Biol. 56(1), 129–146 (1994)

Sherratt J.A., Sage E.H., Murray J.D.: Chemical control of eukaryotic cell movement: a new model. J. Theor. Biol. 162(1), 23–40 (1993)

Stevens A.: The derivation of chemotaxis-equations as limit dynamics of moderately interacting stochastic many particle systems. SIAM J. Appl. Math. 61(1), 183–212 (2000)

Suzuki T.: Free Energy and Self-Interacting Particles. Birkhäuser, Boston (2005)

Tranquillo R.T., Lauffenburger D.A., Zigmond S.H.: A stochastic model for leukocyte random motility and chemotaxis based on receptor binding fluctuations. J. Cell Biol. 106(2), 303–309 (1988)

Tyson R., Lubkin S.R., Murray J.D.: A minimal mechanism for bacterial pattern formation. Proc. R. Soc. Lond. B 266, 299–304 (1999)

Tyson R., Lubkin S.R., Murray J.D.: Model and analysis of chemotactic bacterial patterns in a liquid medium. J. Math. Biol. 38(4), 359–375 (1999)

Velazquez J.J.L.: Point dynamics for a singular limit of the Keller-Segel model. I. motion of the concentration regions. SIAM J. Appl. Math. 64(4), 1198–1223 (2004)

Velazquez J.J.L.: Point dynamics for a singular limit of the Keller-Segel model. II. formation of the concentration regions. SIAM J. Appl. Math. 64(4), 1198–1223 (2004)

Wang X.: Qualitative behavior of solutions of chemotactic diffusion systems: Effects of motility and chemotaxis and dynamics. SIAM J. Math. Ana. 31, 535–560 (2000)

Wang, Z.A., Hillen, T.: Classical solutions and pattern formation for a volume filling chemotaxis model. Chaos, 17(037108) (2007), 13 pp

Wang Z.A., Hillen T.: Shock formation in a chemotaxis model. Math. Methods Appl. Sci. 31(1), 45–70 (2008)

Winkler, M.: Absence of collapse in a parabolic chemotaxis system with signal dependent sensitivity

Woodward D.E., Tyson R., Myerscough M.R., Murray J.D., Budrene E.O., Berg H.C.: Spatio-temporal patterns generated by Salmonella typhimurium. Biophys. J. 68(5), 2181–2189 (1995)

Wrzosek D.: Long time behaviour of solutions to a chemotaxis model with volume filling effect. Proc. Roy. Soc. Edinb. Sect. A 136, 431–444 (2006)

Wrzosek, D.: Global attractor for a chemotaxis model with prevention of overcrowding. Nonlin. Ana. 59, 1293–1310, P2004

Wu D.: Signaling mechanisms for regulation of chemotaxis. Cell Res. 15(1), 52–56 (2005)