A user’s guide to PDE models for chemotaxis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Allegretto W., Xie H., Yang S.: Properties of solutions for a chemotaxis system. J. Math. Biol. 35, 949–966 (1997)
Alt W.: Biased random walk model for chemotaxis and related diffusion approximation. J. Math. Biol. 9, 147–177 (1980)
Alt W., Lauffenburger D.A.: Transient behavior of a chemotaxis system modelling certain types of tissue inflammation. J. Math. Biol. 24(6), 691–722 (1987)
Baker M.D., Wolanin P.M., Stock J.B.: Signal transduction in bacterial chemotaxis. Bioessays 28(1), 9–22 (2006)
Balding D., McElwain D.L.: A mathematical model of tumour-induced capillary growth. J. Theor. Biol. 114(1), 53–73 (1985)
Biler P.: Local and global solvability of some parabolic systems modelling chemotaxis. Adv. Math. Sci. Appl. 8(2), 715–743 (1998)
Biler P.: Global solutions to some parabolic-elliptic systems of chemotaxis. Adv. Math. Sci. Appl. 9(1), 347–359 (1999)
Budd C.J., Carretero-Gonzd́flez R., Russell R.D.: Precise computations of chemotactic collapse using moving mesh methods. J. Comput. Phys. 202(2), 463–487 (2005)
Budick S.A., Dickinson M.H.: Free-flight responses of Drosophila melanogaster to attractive odors. J. Exp. Biol. 209(15), 3001–3017 (2006)
Budrene E.O., Berg H.C.: Complex patterns formed by motile cells of Escherichia coli. Nature 349(6310), 630–633 (1991)
Budrene E.O., Berg H.C.: Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376(6535), 49–53 (1995)
Burger, M., Di Francesco, M., Dolak-Struss, Y.: The Keller-Segel model for chemotaxis: linear vs. nonlinear diffusion. SIAM J. Math. Anal. (2008) (to appear)
Byrne H.M., Cave G., McElwain D.L.: The effect of chemotaxis and chemokinesis on leukocyte locomotion: a new interpretation of experimental results. IMA J. Math. Appl. Med. Biol. 15(3), 235–256 (1998)
Byrne H.M., Owen M.R.: A new interpretation of the Keller–Segel model based on multiphase modelling. J. Math. Biol. 49, 604–626 (2004)
Chaplain M.A.J., Stuart A.M.: A model mechanism for the chemotactic response of endothelial cells to tumor angiogenesis factor. IMA J. Math. Appl. Med. Biol. 10, 149–168 (1993)
Condeelis J., Singer R.H., Segall J.E.: The great escape: when cancer cells hijack the genes for chemotaxis and motility. Annu. Rev. Cell Dev. Biol. 21, 695–718 (2005)
Corrias L., Perthame B., Zaag H.: Global solutions of some chemotaxis and angiogenesis systems in high space dimensions. Milan J. Math. 72, 1–28 (2004)
Dahlquist F.W., Lovely P., Koshland D.E.: Quantitative analysis of bacterial migration in chemotaxis. Nat. New Biol. 236, 120–123 (1972)
Dallon J.C., Othmer H.G.: A discrete cell model with adaptive signalling for aggregation of dictyostelium discoideum. Philos. Trans. R. Soc. B 352, 391–417 (1997)
Dkhil F.: Singular limit of a degenerate chemotaxis-fisher equation. Hiroshima Math. J. 34, 101–115 (2004)
Dolak Y., Hillen T.: Cattaneo models for chemotaxis, numerical solution and pattern formation. J. Math. Biol. 46(2), 153–170 (2003)
Dolak Y., Schmeiser C.: The Keller-Segel model with logistic sensitivity function and small diffusivity. SIAM J. Appl. Math. 66, 286–308 (2005)
Dormann D., Weijer C.J.: Chemotactic cell movement during Dictyostelium development and gastrulation. Curr. Opin. Genet. Dev. 16(4), 367–373 (2006)
Eberl H.J., Parker D.F., van Loosdrecht M.C.M.: A new deterministic spatio-temporal continuum model for biofilm development. J. Theor. Med. 3(3), 161–175 (2001)
Ford R.M., Lauffenburger D.A.: Measurement of bacterial random motility and chemotaxis coefficients: II. application of single cell based mathematical model. Biotechnol. Bioeng. 37, 661–672 (1991)
Gajewski H., Zacharias K.: Global behavior of a reaction-diffusion system modelling chemotaxis. Math. Nachr. 159, 77–114 (1998)
Gueron S., Liron N.: A model of herd grazing as a travelling wave, chemotaxis and stability. J. Math. Biol. 27(5), 595–608 (1989)
Henry M., Hilhorst D., Schätzle R.: Convergence to a viscocity solution for an advection- reaction-diffusion equation arising from a chemotaxis-growth model. Hiroshima Math. J. 29, 591–630 (1999)
Hillen T., Othmer H.G.: The diffusion limit of transport equations derived from velocity jump processes. SIAM J. Appl. Math. 61(3), 751–775 (2000)
Hillen T., Painter K.: Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math. 26, 280–301 (2001)
Hillen T., Painter K., Schmeiser C.: Global existence for chemotaxis with finite sampling radius. Discr. Cont. Dyn. Syst. B 7(1), 125–144 (2007)
Höfer T., Sherratt J.A., Maini P.K.: Dictyostelium discoideum: cellular self-organisation in an excitable biological medium. Proc. R. Soc. Lond. B. 259, 249–257 (1995)
Horstmann D.: Lyapunov functions and L p -estimates for a class of reaction-diffusion systems. Coll. Math. 87, 113–127 (2001)
Horstmann D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences I. Jahresberichte DMV 105(3), 103–165 (2003)
Horstmann D., Stevens A.: A constructive approach to traveling waves in chemotaxis. J. Nonlin. Sci. 14(1), 1–25 (2004)
Jabbarzadeh E., Abrams C.F.: Chemotaxis and random motility in unsteady chemoattractant fields: a computational study. J. Theor. Biol. 235(2), 221–232 (2005)
Kareiva P., Odell G.: Swarms of predators exhibit ’prey-taxis’ if individual predators use area-restricted search. Am. Nat. 130(2), 233–270 (1987)
Keller E.F., Segel L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)
Keller E.F., Segel L.A.: Traveling bands of chemotactic bacteria: a theoretical analysis. J. Theor. Biol. 30, 377–380 (1971)
Kennedy J.S., Marsh D.: Pheromone-regulated anemotaxis in flying moths. Science 184, 999–1001 (1974)
Kolokolnikov T., Erneux T., Wei J.: Mesa-type patterns in the one-dimensional Brusselator and their stability. Physica D 214, 63–77 (2006)
Kuiper H.: A priori bounds and global existence for a strongly coupled quasilinear parabolic system modelling chemotaxis. Electron. J. Differ. Equ. 52, 1–18 (2001)
Kuiper H., Dung L.: Global attractors for cross-diffusion systems on domains of arbitrary dimensions. Rocky Mountain J. Math. 37(5), 1645–1668 (2007)
Landman K.A., Pettet G.J., Newgreen D.F.: Chemotactic cellular migration: smooth and discontinuous travelling wave solutions. SIAM J. Appl. Math. 63(5), 1666–1681 (2003)
Landman K.A., Pettet G.J., Newgreen D.F.: Mathematical models of cell colonization of uniformly growing domains. Bull. Math. Biol. 65(2), 235–262 (2003)
Lapidus I.R., Schiller R.: Model for the chemotactic response of a bacterial population. Biophys. J 16(7), 779–789 (1976)
Larrivee B., Karsan A.: Signaling pathways induced by vascular endothelial growth factor (review). Int. J. Mol. Med. 5(5), 447–456 (2000)
Lauffenburger D.A., Kennedy C.R.: Localized bacterial infection in a distributed model for tissue inflammation. J. Math. Biol. 16(2), 141–163 (1983)
Lee, J.M., Hillen, T., Lewis, M.A.: Continuous travelling waves for prey-taxis. Bull. Math. Biol. (2007) (in review)
Levine H.A., Sleeman B.D.: A system of reaction diffusion equations arising in the theory of reinforced random walks. SIAM J. Appl. Math. 57, 683–730 (1997)
Logan J.A., White B.J., Bentz P., Powell J.A.: Model analysis of spatial patterns in Mountain Pine Beetle outbreaks. Theor. Popul. Biol. 53(3), 236–255 (1998)
Luca M., Chavez-Ross A., Edelstein-Keshet L., Mogilner A.: Chemotactic signaling, microglia, and Alzheimer’s disease senile plaques: is there a connection? Bull. Math. Biol. 65(4), 693–730 (2003)
Maini P.K., Myerscough M.R., Winters K.H., Murray J.D.: Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern generation. Bull. Math. Biol. 53(5), 701–719 (1991)
Mantzaris N.V., Webb S., Othmer H.G.: Mathematical modeling of tumor-induced angiogenesis. J. Math. Biol. 49(2), 111–187 (2004)
Maree A.F., Hogeweg P.: How amoeboids self-organize into a fruiting body: multicellular coordination in Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA 98(7), 3879–3883 (2001)
Mimura M., Tsujikawa T.: Aggregation pattern dynamics in a chemotaxis model including growth. Physica A 230, 499–543 (1996)
Mittal N., Budrene E.O., Brenner M.P., Van Oudenaarden A.: Motility of Escherichia coli cells in clusters formed by chemotactic aggregation. Proc. Natl. Acad. Sci. USA 100(23), 13259–13263 (2003)
Mori I., Ohshima Y.: Molecular neurogenetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans. Bioessays 19(12), 1055–1064 (1997)
Murray J.D.: Mathematical Biology II: Spatial Models and Biochemical Applications, 3rd edn. Springer, New York (2003)
Murray J.D., Myerscough M.R.: Pigmentation pattern formation on snakes. J. Theor. Biol. 149(3), 339–360 (1991)
Myerscough M.R., Maini P.K., Painter K.J.: Pattern formation in a generalized chemotactic model. Bull. Math. Biol. 60(1), 1–26 (1998)
Nagai T., Senba T., Yoshida K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. 40(3), 411–433 (1997)
Nanjundiah V.: Chemotaxis, signal relaying and aggregation morphology. J. Theor. Biol. 42, 63–105 (1973)
Odell G.M., Keller E.F.: Traveling bands of chemotactic bacteria revisited. J. Theor. Biol. 56(1), 243–247 (1976)
Osaki K., Tsujikawa T., Yagi A., Mimura M.: Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal. 51, 119–144 (2002)
Osaki K., Yagi A.: Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkcial. Ekvac. 44, 441–469 (2001)
Othmer H.G., Dunbar S.R., Alt W.: Models of dispersal in biological systems. J. Math. Biol. 26, 263–298 (1988)
Othmer H.G., Hillen T.: The diffusion limit of transport equations II: chemotaxis equations. SIAM J. Appl. Math. 62(4), 1122–1250 (2002)
Othmer H.G., Stevens A.: Aggregation, blowup and collapse: The ABC’s of taxis in reinforced random walks. SIAM J. Appl. Math. 57, 1044–1081 (1997)
Owen M.R., Sherratt J.A.: Pattern formation and spatiotemporal irregularity in a model for macrophage-tumour interactions. J. Theor. Biol. 189(1), 63–80 (1997)
Painter K., Hillen T.: Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Quart. 10(4), 501–543 (2002)
Painter K.J., Maini P.K., Othmer H.G.: Complex spatial patterns in a hybrid chemotaxis reaction-diffusion model. J. Math. Biol. 41(4), 285–314 (2000)
Painter K.J., Maini P.K., Othmer H.G.: Development and applications of a model for cellular response to multiple chemotactic cues. J. Math. Biol. 41(4), 285–314 (2000)
Painter K.J., Othmer H.G., Maini P.K.: Stripe formation in juvenile pomacanthus via chemotactic response to a reaction-diffusion mechanism. Proc. Natl. Acad. Sci. USA 96, 5549–5554 (1999)
Palsson E., Othmer H.G.: A model for individual and collective cell movement in Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA 97(19), 10448–10453 (2000)
Patlak C.S.: Random walk with persistence and external bias. Bull. Math. Biophys. 15, 311–338 (1953)
Perumpanani A.J., Sherratt J.A., Norbury J., Byrne H.M.: Biological inferences from a mathematical model for malignant invasion. Invas. Metastas. 16(4–5), 209–221 (1996)
Post. K.: A non-linear parabolic system modeling chemotaxis with sensitivity functions (1999)
Rascle M., Ziti C.: Finite time blow up in some models of chemotaxis. J. Math. Biol. 33, 388–414 (1995)
Rivero M.A., Tranquillo R.T., Buettner H.M., Lauffenburger D.A.: Transport models for chemotactic cell populations based on individual cell behavior. Chem. Eng. Sci. 44, 1–17 (1989)
Segel L.A.: Incorporation of receptor kinetics into a model for bacterial chemotaxis. J. Theor. Biol. 57(1), 23–42 (1976)
Segel L.A.: A theoretical study of receptor mechanisms in bacterial chemotaxis. SIAM J. Appl. Math. 32, 653–665 (1977)
Sherratt J.A.: Chemotaxis and chemokinesis in eukaryotic cells: the Keller-Segel equations as an approximation to a detailed model. Bull. Math. Biol. 56(1), 129–146 (1994)
Sherratt J.A., Sage E.H., Murray J.D.: Chemical control of eukaryotic cell movement: a new model. J. Theor. Biol. 162(1), 23–40 (1993)
Stevens A.: The derivation of chemotaxis-equations as limit dynamics of moderately interacting stochastic many particle systems. SIAM J. Appl. Math. 61(1), 183–212 (2000)
Tranquillo R.T., Lauffenburger D.A., Zigmond S.H.: A stochastic model for leukocyte random motility and chemotaxis based on receptor binding fluctuations. J. Cell Biol. 106(2), 303–309 (1988)
Tyson R., Lubkin S.R., Murray J.D.: A minimal mechanism for bacterial pattern formation. Proc. R. Soc. Lond. B 266, 299–304 (1999)
Tyson R., Lubkin S.R., Murray J.D.: Model and analysis of chemotactic bacterial patterns in a liquid medium. J. Math. Biol. 38(4), 359–375 (1999)
Velazquez J.J.L.: Point dynamics for a singular limit of the Keller-Segel model. I. motion of the concentration regions. SIAM J. Appl. Math. 64(4), 1198–1223 (2004)
Velazquez J.J.L.: Point dynamics for a singular limit of the Keller-Segel model. II. formation of the concentration regions. SIAM J. Appl. Math. 64(4), 1198–1223 (2004)
Wang X.: Qualitative behavior of solutions of chemotactic diffusion systems: Effects of motility and chemotaxis and dynamics. SIAM J. Math. Ana. 31, 535–560 (2000)
Wang, Z.A., Hillen, T.: Classical solutions and pattern formation for a volume filling chemotaxis model. Chaos, 17(037108) (2007), 13 pp
Wang Z.A., Hillen T.: Shock formation in a chemotaxis model. Math. Methods Appl. Sci. 31(1), 45–70 (2008)
Winkler, M.: Absence of collapse in a parabolic chemotaxis system with signal dependent sensitivity
Woodward D.E., Tyson R., Myerscough M.R., Murray J.D., Budrene E.O., Berg H.C.: Spatio-temporal patterns generated by Salmonella typhimurium. Biophys. J. 68(5), 2181–2189 (1995)
Wrzosek D.: Long time behaviour of solutions to a chemotaxis model with volume filling effect. Proc. Roy. Soc. Edinb. Sect. A 136, 431–444 (2006)
Wrzosek, D.: Global attractor for a chemotaxis model with prevention of overcrowding. Nonlin. Ana. 59, 1293–1310, P2004