Phân bố sinh vật không nhân độc đáo theo phương thẳng đứng trong nước ngầm ở các môi trường địa chất trầm tích sâu ở Hokkaido, Nhật Bản

Progress in Earth and Planetary Science - Tập 11 - Trang 1-13 - 2024
Ayumi Sugiyama1, Tetsuo Ibara1, Kazuyo Nagaosa2, Atsunao Marui3, Kenji Kato2
1Asano Taiseikiso Engineering Co., Ltd., Tokyo, Japan
2Department of Geosciences, Graduate School of Science, Shizuoka University, Shizuoka, Japan
3Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan

Tóm tắt

Mục đích của nghiên cứu này là làm rõ sự phân bố sinh vật không nhân theo phương thẳng đứng trong nước ngầm ở môi trường trầm tích dưới đất với cấu trúc địa chất phức tạp. Sáu mẫu nước ngầm đã được thu thập từ một giếng khoan sâu 1200 m ở ven biển, nơi các lớp đất được hình thành giữa 2,3 và 1,5 triệu năm trước tại Horonobe, Hokkaido, Nhật Bản. Dãy lớp đất nghiên cứu được chia thành ba vùng theo phương thẳng đứng, được phân loại hóa học địa chất dựa trên hàm lượng ion clorua và các đồng vị ổn định của nước. Vùng trên cùng (UZ; sâu hơn 500 m) chủ yếu chứa nước ngọt được cung cấp bởi nước mưa thấm xuống, vùng nước congênit (CWZ; sâu hơn 790 m) chứa nước biển cổ, và vùng khuếch tán (DZ; độ sâu 500–790 m), nằm giữa UZ và CWZ. Sự biến động về mật độ và thành phần của sinh vật không nhân đã được quan sát thấy trong ba vùng này. Mật độ sinh vật không nhân giảm dần từ UZ tới DZ, và mật độ của DZ thấp hơn hai bậc độ lớn so với UZ và CWZ. Hoạt động sinh vật không nhân cao được quan sát trong CWZ dưới DZ. Sự mở rộng theo chiều dọc của sự phân bố sinh vật không nhân từ CWZ, nơi tiềm năng sinh vật không nhân cao được biểu thị bởi khối lượng sinh khối có thể duy trì gần như tương đương với môi trường biển, có thể đã xảy ra trên một quy mô thời gian địa chất từ 80 nghìn năm đến 1,3 triệu năm, theo như tuổi nước ngầm của DZ. DZ là vùng mà hóa học địa chất đã thay đổi một cách mạnh mẽ do sự pha trộn của nước mưa thấm xuống và sự khuếch tán của nước biển cổ sâu, bảo tồn một môi trường dưới đất độc đáo. Khu vực trộn hóa học này có thể được coi là vùng đệm cho sinh vật không nhân nhằm ngăn chặn sự mở rộng của mật độ và hoạt động sinh vật không nhân do khuếch tán và sự phát triển tại chỗ từ cả phía trên và phía dưới các vùng này, điều này được dự kiến sẽ được duy trì trong khoảng thời gian địa chất. Vùng này được coi là quan trọng cho việc sử dụng không gian dưới đất trong môi trường dưới đất sâu của cung đảo.

Từ khóa


Tài liệu tham khảo

Agency for Natural Resources and Energy (2018) The project for development of advanced of geological disposal system in coastal region (2017 Fy) (in Japanese). https://www.enecho.meti.go.jp/category/electricity_and_gas/nuclear/rw/library/2017/29fy_engan.pdf. Accessed 17 Jul 2023 Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169. https://doi.org/10.1128/mr.59.1.143-169.1995 Auty MAE, Gardiner GE, McBrearty SJ, O’Sullivan EO, Mulvihill DM, Collins JK, Fitzgerald GF, Stanton C, Ross RP (2001) Direct in situ viability assessment of bacteria in probiotic dairy products using viability staining in conjunction with confocal scanning laser microscopy. Appl Environ Microbiol 67(1):420–425. https://doi.org/10.1128/AEM.67.1.420-425.2001 Borcard D, Gille F, Legendre P (2011) Numerical ecology with R. Springer, New York Bowman JP, McMeekin TA (2005) Genus XI Pseudoalteromonas. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM et al (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer, New York, pp 467–478 Caesar KH, Kyle JR, Lyons TW, Tripati A, Loyd SJ (2019) Carbonate formation in salt dome cap rocks by microbial anaerobic oxidation of methane. Nat Commun 10:808. https://doi.org/10.1038/s41467-019-08687-z Chandler DP, Li SM, Spadoni CM, Drake GR, Balkwill DL, Fredrickson JK, Brockman FJ (1997) A molecular comparison of culturable aerobic heterotrophic bacteria and 16S rDNA clones derived from a deep subsurface sediment. FEMS Microbiol Ecol 23(2):131–144. https://doi.org/10.1111/j.1574-6941.1997.tb00397.x Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand Stat Theor Appl 11(4):265–270 D’Hondt S, Jørgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA, Cypionka H, Dickens GR, Ferdelman T, Hinrichs KU, Holm NG, Mitterer R, Spivack A, Wang G, Bekins B, Engelen B, Ford K, Gettemy G, Rutherford SD, Sass H, Skilbeck CG, Aiello IW, Guèrin G, House CH, Inagaki F, Meister P, Naehr T, Niitsuma S, Parkes RJ, Schippers A et al (2004) Distributions of microbial activities in deep subseafloor sediments. Science 306(5705):2216–2221. https://doi.org/10.1126/science.1101155 Dai X, Wang Y, Luo L, Pfiffner SM, Li G, Dong Z, Xu Z, Dong H, Huang L (2021) Detection of the deep biosphere in metamorphic rocks from the Chinese continental scientific drilling. Geobiology 19(3):278–291. https://doi.org/10.1111/gbi.12430 Delong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89(12):5685–5689. https://doi.org/10.1073/pnas.89.12.5685 Drake H, Roberts NMW, Heim C, Whitehouse MJ, Siljeström S, Kooijman E, Broman C, Ivarsson M, Åström ME (2019) Timing and origin of natural gas accumulation in the Siljan impact structure. Sweden Nat Commun 10:4736. https://doi.org/10.1038/s41467-019-12728-y Fredrickson JK, McKinley JP, Bjornstad BN, Long PE, Ringelberg DB, White DC, Krumholz LR, Suflita JM, Colwell FS, Lehman RM, Phelps TJ, Onstott TC (1997) Pore-size constraints on the activity and survival of subsurface bacteria in a Late Cretaceous shale-sandstone sequence, northwestern New Mexico. Geomicrobiol J 14(3):183–202. https://doi.org/10.1080/01490459709378043 Garnova ES, Zhilina TN (2009a) Genus III. Alkalibacter. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA et al (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York, pp 896–900 Garnova ES, Zhilina TN (2009b) Genus IV. Anoxynatronum. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA et al (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York, pp 831–834 Gülagiz FK, Sahin S (2017) Comparison of hierarchical and non-hierarchical clustering algorithms. Int J Comput Eng Inf Technol 9(1):6–14 Heuer VB, Inagaki F, Morono Y, Kubo Y, Spivack AJ, Viehweger B, Treude T, Beulig F, Schubotz F, Tonai S, Bowden SA, Cramm M, Henkel S, Hirose T, Homola K, Hoshino T, Ijiri A, Imachi H, Kamiya N, Kaneko M, Lagostina L, Manners H, Mcclelland HL, Metcalfe K, Okutsu N, Pan D, Raudsepp MJ, Sauvage J, Tsang MY, Wang DT et al (2020) Temperature limits to deep subseafloor life in the Nankai Trough subduction zone. Science 370(6521):1230–1234. https://doi.org/10.1126/science.abd7934 HRISE (2005) Annual research report on research project for the subsurface environment (in Japanese). HRISE Horonobe Japan, pp. 143–176 Ikawa R, Machida I, Koshigai M, Nishizaki S, Marui A (2014) Coastal aquifer system in late pleistocene to holocene deposits at Horonobe in Hokkaido. Japan Hydrogeol J 22(5):987–1002. https://doi.org/10.1007/s10040-014-1106-4 Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, Suzuki M, Takai K, Delwiche M, Colwell FS, Nealson KH, Horikoshi K, D’Hondt S, Jørgensen BB (2006) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci U S A 103(8):2815–2820. https://doi.org/10.1073/pnas.0511033103 Inagaki F, Hinrichs KU, Kubo Y, Bowles MW, Heuer VB, Hong WL, Hoshino T, Ijiri A, Imachi H, Ito M, Kaneko M, Lever MA, Lin YS, Methé BA, Morita S, Morono Y, Tanikawa W, Bihan M, Bowden SA, Elvert M, Glombitza C, Gross D, Harrington GJ, Hori T, Li K, Limmer D, Liu CH, Murayama M, Ohkouchi N, Ono S et al (2015) Deep biosphere. Exploring deep microbial life in coal-bearing sediment down to similar to 2.5 km below the ocean floor. Science 349(6246):420–424. https://doi.org/10.1126/science.aaa6882 Ishii SI, Imachi H, Kawano K, Murai D, Ogawara M, Uemastu K, Nealson KH, Inagaki F (2019) Bioelectrochemical stimulation of electromethanogenesis at a seawater-based subsurface aquifer in a natural gas field. Front Energy Res 6:417911. https://doi.org/10.3389/fenrg.2018.00144 Itävaara M, Salavirta H, Marjamaa K, Ruskeeniemi T (2016) Geomicrobiology and metagenomics of terrestrial deep subsurface microbiomes. Adv Appl Microbiol 94:1–77. https://doi.org/10.1016/bs.aambs.2015.12.001 Jaccard P (1912) The distribution of the flora in the alpine zone. New Phytol 11(2):37–50. https://doi.org/10.1111/j.1469-8137.1912.tb05611.x Juni E (2005) Genus II Acinetobacter. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM et al (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Part B. Springer, New York, pp 425–437 Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D’Hondt S (2012) Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA 109(40):16213–16216. https://doi.org/10.1073/pnas.1203849109 Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507–510. https://doi.org/10.1038/35054051 Kato K, Nagaosa K, Kimura H, Katsuyama C, Hama K, Kunimaru T, Tsunogai U, Aoki K (2009) Unique distribution of deep groundwater bacteria constrained by geological setting. Environ Microbiol Rep 1(6):569–574. https://doi.org/10.1111/j.1758-2229.2009.00087.x Kato K, Nagaosa K, Kinoshita T, Kastsuyama C, Nazina TN, Ohnuki T, Kalmykov SN (2020) Microbial ecological function in migration of radionuclides in groundwater. In: Kato K, Konoplev A, Kalmykov SN (eds) Behavior of radionuclides in the environment I. Springer, Singapore, pp 1–34 Kawagucci S, Miyazaki J, Morono Y, Seewald JS, Wheat CG, Takai K (2018) Cool, alkaline serpentinite formation fluid regime with scarce microbial habitability and possible abiotic synthesis beneath the South Chamorro Seamount. Prog Earth Planet Sci 5:74. https://doi.org/10.1186/s40645-018-0232-3 Kuever J, Rainey FA, Widdel F (2005) Family I. Desulfuromonaceae fam. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM et al (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer, New York, p 1006 Kumar M, Sundaram S, Gnansounou E, Larroche C, Thakur IS (2018) Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: a review. Bioresour Technol 247:1059–1068. https://doi.org/10.1016/j.biortech.2017.09.050 Leung DYC, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev 39:426–443. https://doi.org/10.1016/j.rser.2014.07.093 Lipp JS, Morono Y, Inagaki F, Hinrichs KU (2008) Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 454:991–994. https://doi.org/10.1038/nature07174 Maestrojuán GM, Boone DR, Xun L, Mah RA, Zhang L (1990) Transfer of Methanogenium bourgense, Methanogenium marisnigri, Methanogenium olentangyi, and Methanogenium thermophilicum to the genus Methanoculleus gen. nov., emendation of Methanoculleus marisnigri and Methanogenium, and description of new strains of Methanoculleus bourgense and Methanoculleus marisnigri. Int J Syst Bacteriol 40(2):117–122. https://doi.org/10.1099/00207713-40-2-117 Magnabosco C, Lin LH, Dong H, Bomberg M, Ghiorse W, Stan-Lotter H, Pedersen K, Kieft TL, van Heerden E, Onstott TC (2018) The biomass and biodiversity of the continental subsurface. Nat Geosci 11:707–717. https://doi.org/10.1038/s41561-018-0221-6 Matsushita M, Ishikawa S, Nagai K, Hirata Y, Ozawa K, Mitsunobu S, Kimura H (2016) Regional variation of CH4 and N2 production processes in the deep aquifers of an accretionary prism. Microbes Environ 31(3):329–338. https://doi.org/10.1264/jsme2.ME16091 Matsushita M, Ishikawa S, Magara K, Sato Y, Kimura H (2020) The potential for CH4 production by syntrophic microbial communities in diverse deep aquifers associated with an accretionary prism and its overlying sedimentary layers. Microbes Environ 35(1):ME19103. https://doi.org/10.1264/jsme2.ME19103 McMahon S, Parnell J (2014) Weighing the deep continental biosphere. FEMS Microbiol Ecol 87(1):113–120. https://doi.org/10.1111/1574-6941.12196 Miettinen H, Bomberg M, Vikman M (2018) Acetate activates deep subsurface fracture fluid microbial communities in Olkiluoto, Finland. Geosciences 8(11):399. https://doi.org/10.3390/geosciences8110399 Momper L, Kiel Reese B, Zinke L, Wanger G, Osburn MR, Moser D, Amend JP (2017) Major phylum-level differences between porefluid and host rock bacterial communities in the terrestrial deep subsurface. Environ Microbiol Rep 9(5):501–511. https://doi.org/10.1111/1758-2229.12563 Morozova D, Zettlitzer M, Let D, Würdemann H (2011) Monitoring of the microbial community composition in deep subsurface saline aquifers during CO2 storage in Ketzin, Germany. Energy Procedia 4:4362–4370. https://doi.org/10.1016/j.egypro.2011.02.388 Murakami Y, Naganuma T, Iwatsuki T (1999) Deep subsurface microbial communities in the Tono area, central Japan (in Japanese). J Nucl Fuel Cycle Environ 5:59–66 Nagaosa K, Maruyama T, Welikala N, Yamashita Y, Saito Y, Kato K, Fortin D, Nanba K, Miyasaka I, Fukunaga S (2008) Active bacterial populations and grazing impact revealed by an in situ experiment in a shallow aquifer. Geomicrobiol J 25(3–4):131–141. https://doi.org/10.1080/01490450802006793 Newell SY, Christian RR (1981) Frequency of dividing cells as an estimator of bacterial productivity. Appl Environ Microbiol 42(1):23–31. https://doi.org/10.1128/aem.42.1.23-31.1981 Nisson DM, Kieft TL, Drake H, Warr O, Sherwood Lollar BS, Ogasawara H, Perl SM, Friefeld BM, Castillo J, Whitehouse MJ, Kooijman E, Onstott TC (2023) Hydrogeochemical and isotopic signatures elucidate deep subsurface hypersaline brine formation through radiolysis driven water-rock interaction. Geochim Cosmochim Acta 340:65–84. https://doi.org/10.1016/j.gca.2022.11.015 Nyyssönen M, Hultman J, Ahonen L, Kukkonen I, Paulin L, Laine P, Itävaara M, Auvinen P (2014) Taxonomically and functionally diverse microbial communities in deep crystalline rocks of the Fennoscandian shield. ISME J 8:126–138. https://doi.org/10.1038/ismej.2013.125 Palleroni NJ (2009) Genus I. Pseudomonas. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM et al (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer, New York, pp 323–379 Parkes RJ, Gibson GR, Mueller-Harvey I, Buckingham WJ, Herbert RA (1989) Determination of the substrates for sulphate-reducing bacteria within marine and esturaine sediments with different rates of sulphate reduction. Microbiology 135(1):175–187. https://doi.org/10.1099/00221287-135-1-175 Parkes RJ, Cragg BA, Bale SJ, Getliff JM, Goodman K, Rochelle PA, Weightman AJ, Harvey SM (1994) Deep bacterial biosphere in pacific ocean sediments. Nature 371:410–413. https://doi.org/10.1038/371410a0 Parkes RJ, Cragg B, Roussel E, Webster G, Weightman A, Sass H (2014) A review of prokaryotic populations and processes in sub-seafloor sediments, including biosphere: geosphere interactions. Mar Geol 352:409–425. https://doi.org/10.1016/j.margeo.2014.02.009 Parshina SN, Stams AJM (2009) Genus VIII. Soehngenia. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA et al (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York, pp 1141–1143 Pedersen K (1997) Microbial life in deep granitic rock. FEMS Microbiol Rev 20(3–4):399–414. https://doi.org/10.1111/j.1574-6976.1997.tb00325.x Pedersen K (1999) Subterranean microorganisms and radioactive waste disposal in Sweden. Eng Geol 52(3–4):163–176. https://doi.org/10.1016/S0013-7952(99)00004-6 Pikuta EV, Itoh T, Krader P, Tang J, Whitman WB, Hoover RB (2006) Anaerovirgula multivorans gen. nov., sp. nov., a novel spore-forming, alkaliphilic anaerobe isolated from Owens Lake, California, USA. Int J Syst Evol Microbiol 56(11):2623–2629. https://doi.org/10.1099/ijs.0.64198-0 Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25(5):943–948. https://doi.org/10.4319/lo.1980.25.5.0943 Salka I, Moulisová V, Koblížek M, Jost G, Jürgens K, Labrenz M (2008) Abundance, depth distribution, and composition of aerobic bacteriochlorophyll a-producing bacteria in four basins of the central Baltic Sea. Appl Environ Microbiol 74(14):4398–4404. https://doi.org/10.1128/AEM.02447-07 Schilling OS, Nagaosa K, Schilling TU, Brennwald MS, Sohrin R, Tomonaga Y, Brunner P, Kipfer R, Kato K (2023) Revisiting Mt Fuji’s groundwater origins with helium, vanadium and environmental DNA tracers. Nat Water 1:60–73. https://doi.org/10.1038/s44221-022-00001-4 Segawa T, Sugiyama A, Kinoshita T, Sohrin R, Nakano T, Nagaosa K, Greenidge D, Kato K (2015) Microbes in groundwater of a volcanic mountain Mt. Fuji; 16S rDNA phylogenetic analysis as a possible indicator for the transport routes of groundwater. Geomicrobiol J 32(8):677–688. https://doi.org/10.1080/01490451.2014.991811 Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x Shlimon AG, Friedrich MW, Niemann H, Ramsing NB, Finster K (2004) Methanobacterium aarhusense sp. nov., a novel methanogen isolated from a marine sediment (Aarhus Bay, Denmark). Int J Syst Evol Microbiol 54(3):759–763. https://doi.org/10.1099/ijs.0.02994-0 Simankova MV, Kotsyurbenko OR (2009) Genus II. Acetobacterium. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA et al (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York, pp 891–896 Simpson EH (1949) Measurement of diversity. Nature 163:688. https://doi.org/10.1038/163688a0 Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30(225):420 Somerville CC, Knight IT, Straube WL, Colwell RR (1989) Simple, rapid method for direct isolation of nucleic acids from aquatic environments. Appl Environ Microbiol 55(3):548–554. https://doi.org/10.1128/aem.55.3.548-554.1989 Sugiyama A, Masuda S, Nagaosa K, Tsujimura M, Kato K (2018) Tracking the direct impact of rainfall on groundwater at Mt. Fuji by multiple analyses including microbial DNA. Biogeosciences 15(3):721–732. https://doi.org/10.5194/bg-15-721-2018 Sugiyama A, Ibara T, Nagaosa K, Tsujimura M, Kato K (2021b) Collect the basic microbial information to evaluate the deep groundwater environment (in Japanese with English abstract). Japan Geotech J 16(1):13–21. https://doi.org/10.3208/jgs.16.13 Sugiyama A, Tomioka Y, Hirano S, Kurita T (2021a) Microbial community analysis of deep-seated fluids: Do microbes live in slab-derived fluid? Abstract HCG23-P03 presented at the JpGU-AGU Joint Meeting 2021, Online, 30 May to Jun 6 2021. https://confit.atlas.jp/guide/event/jpgu2021/subject/HCG23-P03/date?cryptoId=. Accessed 17 Jul 2023 Teramoto M (2015) Oleibacter. Bergey’s manual of systematics of archaea and bacteria. Wiley, NJ, pp 1–7 Teramoto M, Ohuchi M, Hatmanti A, Darmayati Y, Widyastuti Y, Harayama S, Fukunaga Y (2011) Oleibacter marinus gen. nov., sp. nov., a bacterium that degrades petroleum aliphatic hydrocarbons in a tropical marine environment. Int J Syst Evol Microbiol 61(2):375–380. https://doi.org/10.1099/ijs.0.018671-0 Utsunomiya S, Ohnuki T, Kato K, Kalmykov SN (2020) Commentary on the role of microorganisms and nanoparticles in radionuclides migration through groundwater. In: Kato K, Konoplev A, Kalmykov SN (eds) Behavior of radionuclides in the environment I. Springer, Singapore, pp 221–225 Viollier E, Inglett PW, Hunter K, Roychoudhury AN, Van Cappellen P (2000) The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl Geochem 15(6):785–790. https://doi.org/10.1016/S0883-2927(99)00097-9 Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95(12):6578–6583. https://doi.org/10.1073/pnas.95.12.6578 Yoshikawa H, Inagaki M, Miyasaka I (2009) Development of scenario analysis and database for quantitative analysis of microbial effects on the repository performance. MRS Proc 1193:302–307. https://doi.org/10.1557/PROC-1193-375 Zhu J, Liu X, Dong X (2011) Methanobacterium movens sp. nov. and Methanobacterium flexile sp. nov., isolated from lake sediment. Int J Syst Evol Microbiol 61(12):2974–2978. https://doi.org/10.1099/ijs.0.027540-0