A unified theory of plasticity, progressive damage and failure in graphene-metal nanocomposites

International Journal of Plasticity - Tập 99 - Trang 58-80 - 2017
Xiaodong Xia1,2, Yu Su3, Zheng Zhong4, George J. Weng5
1School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, PR China
2Department of Mechanical and Aerospace Engineering, Rutgers University, New Brunswick, NJ, 08903, USA
3Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
4School of Science, Harbin Institute of Technology, Shenzhen, 518055, PR China
5Department of Mechanical and Aerospace Engineering, Rutgers University, New Brunswick, NJ 08903, USA

Tài liệu tham khảo

Akinwande, 2017, A review on mechanics and mechanical properties of 2D materials - graphene and beyond, Extreme Mech. Lett., 13, 42, 10.1016/j.eml.2017.01.008 Barai, 2011, A theory of plasticity for carbon nanotube reinforced composites, Int. J. Plast., 27, 539, 10.1016/j.ijplas.2010.08.006 Berveiller, 1979, An extension of the self-consistent scheme to plastically-flowing polycrystals, J. Mech. Phys. Solids, 26, 325, 10.1016/0022-5096(78)90003-0 Bobeth, 1986, Field fluctuations in multicomponent mixtures, J. Mech. Phys. Solids, 34, 1, 10.1016/0022-5096(86)90002-5 Bonora, 1997, A nonlinear CDM model for ductile failure, Engng. Fract. Mech., 58, 11, 10.1016/S0013-7944(97)00074-X Bonora, 2005, Ductile damage evolution under triaxial state of stress: theory and experiments, Int. J. Plast., 21, 981, 10.1016/j.ijplas.2004.06.003 Bruggeman, 1935, Calculation of various physics constants in heterogenous substances I Dielectricity constants and conductivity of mixed bodies from isotropic substances, Ann. Phys., 24, 636, 10.1002/andp.19354160705 Cadelano, 2010, Elastic properties of hydrogenated graphene, Phys. Rev. B, 82, 235414, 10.1103/PhysRevB.82.235414 Chandrakanth, 1993, A new ductile damage evolution model, Int. J. Fract., 60, R73, 10.1007/BF00034747 Eshelby, 1957, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. A, 241, 376, 10.1098/rspa.1957.0133 Formica, 2017, Three-dimensional modeling of interfacial stick-slip in carbon nanotube nanocomposites, Int. J. Plast., 88, 204, 10.1016/j.ijplas.2016.10.012 Ginzburg, 1945, The dielectric properties of crystals of seignettcelectric substances and of barium titanate, Zh. Eksp. Teor. Fiz., 15, 739 Gurson, 1977, Continuum theory of ductile rupture by void nucleation and growth: Part I - yield criteria and flow rules for porous ductile media, J. Eng. Mater. Tech., 99, 2, 10.1115/1.3443401 Hashemi, 2016, On the overall viscoelastic behavior of graphene/polymer nanocomposites with imperfect interface, Int. J. Eng. Sci., 105, 38, 10.1016/j.ijengsci.2016.04.006 Hashemi, 2016, A theoretical treatment of graphene nanocomposites with percolation threshold, tunneling-assisted conductivity and microcapacitor effect in AC and DC electrical settings, Carbon, 96, 474, 10.1016/j.carbon.2015.09.103 Hashin, 1963, A variational approach to the theory of the elastic behaviour of multiphase materials, J. Mech. Phys. Solids, 11, 127, 10.1016/0022-5096(63)90060-7 Hill, 1964, Theory of mechanical properties of fiber-strengthened materials: I. Elastic behavior, J. Mech. Phys. Solids, 13, 89, 10.1016/0022-5096(65)90023-2 Hu, 1996, A method of plasticity for general aligned spheroidal void or fiber-reinforced composites, Int. J. Plast., 12, 439, 10.1016/S0749-6419(96)00015-0 Hu, 1997, Composite plasticity based on matrix average second order stress moment, Int. J. Solids Structs, 34, 1007, 10.1016/S0020-7683(96)00044-3 Hu, 2000, Some reflections on the Mori-Tanaka and Ponte Castaneda-Willis methods with randomly oriented ellipsoidal inclusions, Acta Mech., 140, 31, 10.1007/BF01175978 Hwang, 2013, Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process, Adv. Mater, 25, 6724, 10.1002/adma.201302495 Kachanov, 1958, Rupture time under creep conditions, IVZ Akad. Nauk., 8, 26 Kelly, 1981 Kreher, 1989 Landau, 1937, On the theory of phase transitions, I. Zh. Eksp. Teor. Fiz., 11, 19 Leckie, 1974, Creep rupture of structures, Proc. R. Soc. Lond. A, 340, 323, 10.1098/rspa.1974.0155 Lee, 2008, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385, 10.1126/science.1157996 Lemaitre, 1972, Evaluation of dissipation and damage in metals submitted to dynamic loading, Int. Conf. Mech. Behav. Mater., Jpn, 540 Lemaitre, 1985, A continuous damage mechanics model for ductile fracture, J. Eng. Mater. Technol., 107, 83, 10.1115/1.3225775 Li, 1999, A theory of domain switch for the nonlinear behavior of ferroelectrics, Proc. R. Soc. Lond. A, 455, 3493, 10.1098/rspa.1999.0462 Li, 2001, A micromechanics-based hysteresis model for ferroelectric ceramics, J. Intel. Mat. Syst. Str., 12, 79, 10.1106/CK2A-WA5V-27VK-V88E Li, 2007, A secant-viscosity composite model for the strain-rate sensitivity of nanocrystalline materials, Int. J. Plast., 23, 2115, 10.1016/j.ijplas.2007.03.016 Meyer, 2007, The structure of suspended graphene sheets, Nature, 446, 60, 10.1038/nature05545 Mori, 1973, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., 21, 571, 10.1016/0001-6160(73)90064-3 Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896 Pan, 2014, A nonlinear constitutive model of unidirectional natural fiber reinforced composites considering moisture absorption, J. Mech. Phys. Solids, 69, 132, 10.1016/j.jmps.2014.04.007 Pan, 2016, Analysis of creep and modulus loss of the wood cell wall, Acta Mech., 227, 3191, 10.1007/s00707-015-1532-y Pirondi, 2003, Modeling ductile damage under fully reversed cycling, Comput. Mater. Sci., 26, 129, 10.1016/S0927-0256(02)00411-1 Ponte Castañeda, 1995, The effect of spatial distribution on the effective behavior of composite materials and cracked media, J. Mech. Phys. Solids, 43, 1919, 10.1016/0022-5096(95)00058-Q Potts, 2011, Graphene-based polymer nanocomposites, Polymer, 52, 5, 10.1016/j.polymer.2010.11.042 Pryor, 1998, Comparison of two methods for describing the strain profiles in quantum dots, J. Appl. Phys., 83, 2548, 10.1063/1.366631 Qiu, 1990, On the application of Mori-Tanaka's theory involving transversely isotropic spheroidal inclusions, Int. J. Eng. Sci., 28, 1121, 10.1016/0020-7225(90)90112-V Qiu, 1992, A theory of plasticity for porous materials and particle-reinforced composites, J. Appl. Mech., 59, 261, 10.1115/1.2899515 Qiu, 1993, Plastic potential and yield function of porous materials with aligned and randomly oriented spheroidal voids, Int. J. Plast., 9, 271, 10.1016/0749-6419(93)90038-R Rafiee, 2009, Enhanced mechanical properties of nanocomposites at low graphene content, ACS Nano, 3, 3884, 10.1021/nn9010472 Rajagopal, 2007, On the shear and bending of a degrading polymer beam, Int. J. Plast., 23, 1618, 10.1016/j.ijplas.2007.02.007 Shokrieh, 2013, Nanoindentation and nanoscratch investigations on graphene-based nanocomposites, Polym. Test., 32, 45, 10.1016/j.polymertesting.2012.09.001 Stankovich, 2006, Graphene-based composite materials, Nature, 442, 282, 10.1038/nature04969 Stoleru, 2002, Self-assembled (In,Ga)As/GaAs quantum-dot nanostructures: strain distribution and electronic structure, Phys. E, 15, 131, 10.1016/S1386-9477(02)00459-9 Su, 2011, Effects of surface tension on the size- dependent ferroelectric characteristics of free-standing BaTiO3 nano-thin films, J. Appl. Phys., 110, 084108, 10.1063/1.3652906 Su, 2015, A phase field study of frequency dependence and grain-size effects in nanocrystalline ferroelectric polycrystals, Acta Mater, 87, 293, 10.1016/j.actamat.2015.01.015 Su, 2017, Intrinsic versus extrinsic effects of the grain boundary on the properties of ferroelectric nanoceramics, Phys. Rev. B, 95, 054121, 10.1103/PhysRevB.95.054121 Tai, 1990, Plastic damage and ductile fracture in mild steels, Engng. Fract. Mech., 37, 853, 10.1016/0013-7944(90)90084-T Tandon, 1988, A theory of particle-reinforced plasticity, J. Appl. Mech., 55, 126, 10.1115/1.3173618 Walpole, 1981, Elastic behavior of composite materials: theoretical foundations, Adv. Appl. Mech., 21, 169, 10.1016/S0065-2156(08)70332-6 Wang, 2015, Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunneling, J. Appl. Phys., 118, 065101, 10.1063/1.4928293 Wei, 2015, Plasticity and ductility in graphene oxide through a mechanochemically induced damage tolerance mechanism, Nat. Commun., 6, 8029, 10.1038/ncomms9029 Weng, 1984, Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions, Int. J. Eng. Sci., 22, 845, 10.1016/0020-7225(84)90033-8 Weng, 1990, The overall elastoplastic stress-strain relations of dual-phase metals, J. Mech. Phys. Solids, 38, 419, 10.1016/0022-5096(90)90007-Q Weng, 1992, Explicit evaluation of Willis' bounds with ellipsoidal inclusions, Int. J. Eng. Sci., 30, 83, 10.1016/0020-7225(92)90123-X Willis, 1977, Bounds and self-consistent estimates for the overall properties of anisotropic composites, J. Mech. Phys. Solids, 25, 185, 10.1016/0022-5096(77)90022-9 Wu, 2004, Atomistic and continuum simulation on extension behaviour of single crystal with nano-holes, Modelling Simul. Mater. Sci. Eng., 12, 225, 10.1088/0965-0393/12/2/004 Xia, 2016, A theory of electrical conductivity, dielectric constant, and electromagnetic interference shielding for lightweight graphene composite foams, J. Appl. Phys., 120, 085102, 10.1063/1.4961401 Xia, 2016, Theory of electric creep and electromechanical coupling with domain evolution for non-poled and fully poled ferroelectric ceramics, Proc. R. Soc. Lond. A, 472, 20160468 Xia, 2017, Theory of electrical conductivity and dielectric permittivity of highly aligned graphene-based nanocomposites, J. Phys. Condens. Matter, 29, 205702, 10.1088/1361-648X/aa68ec Zhao, 2015, Enhanced strength in reduced graphene oxide/nickel composites prepared by molecular-level mixing for structural applications, Appl. Phys. A, 118, 409, 10.1007/s00339-014-8909-y