A unified framework of temporal information expression in geosciences knowledge system
Tài liệu tham khảo
Alekseev, 2015, The international stratigraphic chart: state of the art, Russ. Geol. Geophys., 56, 524, 10.1016/j.rgg.2015.03.004
Arboit, 2021, Constraining the links between the Himalayan belt and the Central Myanmar Basins during the Cenozoic: An integrated multi-proxy detrital geochronology and trace-element geochemistry study, Geosci. Front., 12, 657, 10.1016/j.gsf.2020.05.024
Bergen, 2019, Machine learning for data-driven discovery in solid Earth geoscience, Science, 363, eaau0323, 10.1126/science.aau0323
Dbpedia Community. 2021b. Latest releases of core data from en.wikipedia.org [Online]. Available: https://databus.dbpedia.org/dbpedia/collections/latest-core [Accessed 12.12.2021 2021].
Cox, 2016, Time ontology extended for non-Gregorian calendar applications, Semant. Web, 7, 201, 10.3233/SW-150187
Cox, S. J. D., Little, C. 2021. Time Ontology in OWL [Online]. Available: https://www.w3.org/TR/owl-time/ [Accessed 30th May 2021 2021].
Cox, 2015, A geologic timescale ontology and service, Earth Sci. Inform., 8, 5, 10.1007/s12145-014-0170-6
Dbpedia Community. 2021a. DBpedia Ontology Archive [Online]. Available: https://archivo.dbpedia.org/list [Accessed 2021].
Fan, 2020, A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity, Science, 367, 272, 10.1126/science.aax4953
Frasincar, F., Milea, V., Kaymak, U. 2010. tOWL: Integrating Time in OWL. In: De Virgilio, R., Giunchiglia, F. & Tanca, L. (eds.) Semantic Web Information Management: A Model-Based Perspective. Berlin, Heidelberg: Springer Berlin Heidelberg.
Fu, 2021, Integration of zircon and apatite U-Pb geochronology and geochemical mapping of the Wude basalts (Emeishan large igneous province): A tool for a better understanding of the tectonothermal and geodynamic evolution of the Emeishan LIP, Geosci. Front., 12, 573, 10.1016/j.gsf.2020.08.004
Hobbs, J. R., Pan, F. 2006. Time ontology in OWL [Online]. Available: https://www.w3.org/TR/owl-time/ [Accessed 2021].
Hou, 2018, Geologic time scale ontology and its applications in semantic retrieval, J. Geo-Info. Sci., 20, 17
Jiang, 2021, Standardization of cartography and geographic information
Lehmann, 2015, DBpedia – A large-scale, multilingual knowledge base extracted from Wikipedia, Semant. Web, 6, 167, 10.3233/SW-140134
Levine, 2016, The history of time and frequency from antiquity to the present day, Eur. Phys. J. H, 41, 1, 10.1140/epjh/e2016-70004-3
Ma, 2013, Recent progress on geologic time ontologies and considerations for future works, Earth Sci. Inform., 6, 31, 10.1007/s12145-013-0110-x
Ma, 2011, A SKOS-based multilingual thesaurus of geological time scale for interoperability of online geological maps, Comput. Geosci., 37, 1602, 10.1016/j.cageo.2011.02.011
Ma, 2012, Ontology-aided annotation, visualization, and generalization of geological time-scale information from online geological map services, Comput. Geosci., 40, 107, 10.1016/j.cageo.2011.07.018
Ma, 2020, A new structure for representing and tracking version information in a deep time knowledge graph, Comput. Geosci., 145, 10.1016/j.cageo.2020.104620
Normile, D. 2019. Earth scientists plan a ‘geological Google’. Science, 363, 917-917.
Pan, 2004, Time in owl-s, 29
Perrin, 2011, Geological time formalization: an improved formal model for describing time successions and their correlation, Earth Sci. Inform., 4, 81, 10.1007/s12145-011-0080-9
Saïs, 2020, MOMENT: Temporal Meta-fact Generation and Propagation in Knowledge Graphs
Stephenson, 2020, Progress towards the establishment of the IUGS Deep-time Digital Earth (DDE) programme, Episodes, 43, 1057, 10.18814/epiiugs/2020/020057
Tanon, P. T., Weikum, G., Suchanek, F. YAGO 4: A Reason-able Knowledge Base. In: Harth, A., Kirrane, S., Ngonga Ngomo, A.-C., Paulheim, H., Rula, A., Gentile, A. L., Hase, P., Cochez, M. (Eds.). Semant. Web, 2020//2020 Cham. Springer International Publishing, pp. 583-596.
The International Organization for Standardization, 2002. Geographic information-Temporal schema. Switzerland.
Wang, 2021, The Deep-Time Digital Earth program: data-driven discovery in geosciences, Natl. Sci Rev., 8, nwab027, 10.1093/nsr/nwab027
Wang, 2018, The application of data pre-processing technology in the geoscience big data, Acta Petrol. Sin., 34, 303
Wang, 2019, Geographic knowledge graph (GeoKG): a formalized geographic knowledge representation, ISPRS Int J. Geo-Inf., 8
Wang, 2021, A web text mining approach for the evaluation of regional characteristics at the town level, Trans. GIS, 25, 2074, 10.1111/tgis.12763
Wong, 2009, Text mining for real-time ontology evolution
Zhang, 2011, A Chinese time ontology for the Semantic Web, Knowl. Syst., 24, 1057, 10.1016/j.knosys.2011.04.021
Zhang, 2018, Geospatial sensor web: A cyber-physical infrastructure for geoscience research and application, Earth Sci. Rev., 185, 684, 10.1016/j.earscirev.2018.07.006
Zhou, 2021, Geoscience knowledge graph in the big data era, Sci. China Earth Sci., 64, 1105, 10.1007/s11430-020-9750-4
Zou, 2011, Modelling ancient Chinese time ontology, J. Inf. Sci., 37, 332, 10.1177/0165551511406063