A unified framework of temporal information expression in geosciences knowledge system

Geoscience Frontiers - Tập 14 - Trang 101465 - 2023
Shu Wang1, Yunqiang Zhu1,2, Yanmin Qi1,3, Zhiwei Hou4, Kai Sun1, Weirong Li1,5, Lei Hu1,5, Jie Yang1, Hairong Lv6
1State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
2Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
3University of Nottingham Ningbo China, Faculty of Science and Engineering, Ningbo 315154, China
4Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou 510070, China
5University of Chinese Academy of Sciences, Beijing 100101, China
6Department of Automation, Tsinghua University, Beijing 100084, China

Tài liệu tham khảo

Alekseev, 2015, The international stratigraphic chart: state of the art, Russ. Geol. Geophys., 56, 524, 10.1016/j.rgg.2015.03.004 Arboit, 2021, Constraining the links between the Himalayan belt and the Central Myanmar Basins during the Cenozoic: An integrated multi-proxy detrital geochronology and trace-element geochemistry study, Geosci. Front., 12, 657, 10.1016/j.gsf.2020.05.024 Bergen, 2019, Machine learning for data-driven discovery in solid Earth geoscience, Science, 363, eaau0323, 10.1126/science.aau0323 Dbpedia Community. 2021b. Latest releases of core data from en.wikipedia.org [Online]. Available: https://databus.dbpedia.org/dbpedia/collections/latest-core [Accessed 12.12.2021 2021]. Cox, 2016, Time ontology extended for non-Gregorian calendar applications, Semant. Web, 7, 201, 10.3233/SW-150187 Cox, S. J. D., Little, C. 2021. Time Ontology in OWL [Online]. Available: https://www.w3.org/TR/owl-time/ [Accessed 30th May 2021 2021]. Cox, 2015, A geologic timescale ontology and service, Earth Sci. Inform., 8, 5, 10.1007/s12145-014-0170-6 Dbpedia Community. 2021a. DBpedia Ontology Archive [Online]. Available: https://archivo.dbpedia.org/list [Accessed 2021]. Fan, 2020, A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity, Science, 367, 272, 10.1126/science.aax4953 Frasincar, F., Milea, V., Kaymak, U. 2010. tOWL: Integrating Time in OWL. In: De Virgilio, R., Giunchiglia, F. & Tanca, L. (eds.) Semantic Web Information Management: A Model-Based Perspective. Berlin, Heidelberg: Springer Berlin Heidelberg. Fu, 2021, Integration of zircon and apatite U-Pb geochronology and geochemical mapping of the Wude basalts (Emeishan large igneous province): A tool for a better understanding of the tectonothermal and geodynamic evolution of the Emeishan LIP, Geosci. Front., 12, 573, 10.1016/j.gsf.2020.08.004 Hobbs, J. R., Pan, F. 2006. Time ontology in OWL [Online]. Available: https://www.w3.org/TR/owl-time/ [Accessed 2021]. Hou, 2018, Geologic time scale ontology and its applications in semantic retrieval, J. Geo-Info. Sci., 20, 17 Jiang, 2021, Standardization of cartography and geographic information Lehmann, 2015, DBpedia – A large-scale, multilingual knowledge base extracted from Wikipedia, Semant. Web, 6, 167, 10.3233/SW-140134 Levine, 2016, The history of time and frequency from antiquity to the present day, Eur. Phys. J. H, 41, 1, 10.1140/epjh/e2016-70004-3 Ma, 2013, Recent progress on geologic time ontologies and considerations for future works, Earth Sci. Inform., 6, 31, 10.1007/s12145-013-0110-x Ma, 2011, A SKOS-based multilingual thesaurus of geological time scale for interoperability of online geological maps, Comput. Geosci., 37, 1602, 10.1016/j.cageo.2011.02.011 Ma, 2012, Ontology-aided annotation, visualization, and generalization of geological time-scale information from online geological map services, Comput. Geosci., 40, 107, 10.1016/j.cageo.2011.07.018 Ma, 2020, A new structure for representing and tracking version information in a deep time knowledge graph, Comput. Geosci., 145, 10.1016/j.cageo.2020.104620 Normile, D. 2019. Earth scientists plan a ‘geological Google’. Science, 363, 917-917. Pan, 2004, Time in owl-s, 29 Perrin, 2011, Geological time formalization: an improved formal model for describing time successions and their correlation, Earth Sci. Inform., 4, 81, 10.1007/s12145-011-0080-9 Saïs, 2020, MOMENT: Temporal Meta-fact Generation and Propagation in Knowledge Graphs Stephenson, 2020, Progress towards the establishment of the IUGS Deep-time Digital Earth (DDE) programme, Episodes, 43, 1057, 10.18814/epiiugs/2020/020057 Tanon, P. T., Weikum, G., Suchanek, F. YAGO 4: A Reason-able Knowledge Base. In: Harth, A., Kirrane, S., Ngonga Ngomo, A.-C., Paulheim, H., Rula, A., Gentile, A. L., Hase, P., Cochez, M. (Eds.). Semant. Web, 2020//2020 Cham. Springer International Publishing, pp. 583-596. The International Organization for Standardization, 2002. Geographic information-Temporal schema. Switzerland. Wang, 2021, The Deep-Time Digital Earth program: data-driven discovery in geosciences, Natl. Sci Rev., 8, nwab027, 10.1093/nsr/nwab027 Wang, 2018, The application of data pre-processing technology in the geoscience big data, Acta Petrol. Sin., 34, 303 Wang, 2019, Geographic knowledge graph (GeoKG): a formalized geographic knowledge representation, ISPRS Int J. Geo-Inf., 8 Wang, 2021, A web text mining approach for the evaluation of regional characteristics at the town level, Trans. GIS, 25, 2074, 10.1111/tgis.12763 Wong, 2009, Text mining for real-time ontology evolution Zhang, 2011, A Chinese time ontology for the Semantic Web, Knowl. Syst., 24, 1057, 10.1016/j.knosys.2011.04.021 Zhang, 2018, Geospatial sensor web: A cyber-physical infrastructure for geoscience research and application, Earth Sci. Rev., 185, 684, 10.1016/j.earscirev.2018.07.006 Zhou, 2021, Geoscience knowledge graph in the big data era, Sci. China Earth Sci., 64, 1105, 10.1007/s11430-020-9750-4 Zou, 2011, Modelling ancient Chinese time ontology, J. Inf. Sci., 37, 332, 10.1177/0165551511406063