A unified approach to output synchronization of heterogeneous multi-agent systems via L2-gain design
Tóm tắt
In this paper, a unified design procedure is given for output synchronization of heterogeneous multi-agent systems (MAS) on communication graph topologies, using relative output measurements from neighbors. Three different control protocols, namely, full-state feedback, static output-feedback, and dynamic output-feedback, are designed for output synchronization. It is seen that a unified design procedure for heterogeneous MAS can be given by formulation and solution of a suitable local L2-gain design problem. Sufficient conditions are developed in terms of stabilizing the local agents’ dynamics, satisfying a certain small-gain criterion, and solving the output regulator equations. Local design procedures are presented for each agent to guarantee that these sufficient conditions are satisfied. The proposed control protocols require only one copy of the leader’s dynamics in the compensator, regardless of the dimensions of the outputs. This results in lower-dimensional compensators for systems with high-order outputs, compared to the p-copy internal model approach. All three proposed control protocols are verified using numerical simulations.
Tài liệu tham khảo
J. A. Fax, R. M. Murray. Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control, 2004, 49(9): 1465–1476.
R. O. Saber, R. M. Murray. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 2004, 49(9): 1520–1533.
W. Ren, R. W. Beard, E. M. Atkins. Information consensus in multivehicle cooperative control: Collective group behavior through local interaction. IEEE Control Systems Magazine, 2007, 2(27): 71–82.
Z. Qu. Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles. London: Springer, 2009.
F. L. Lewis, H. Zhang, K. H. Movric, et al. Cooperative Control of Multi-Agent Systems: Optimal and Adaptive Design Approaches. London: Springer, 2014.
S. Zuo, A. Davoudi, Y. Song, et al. Distributed finite-time voltage and frequency restoration in islanded ac microgrids. IEEE Transactions on Industrial Electronics, 2016, 63(10): 5988–5997.
G. Wen, Z. Duan, Z. Li, et al. Consensus and its L 2- gain performance of multi-agent systems with intermittent information transmissions. International Journal of Control, 2012, 85(4): 384–396.
Y. Hong, G. Chen, L. Bushnell. Distributed observers design for leader-following control of multi-agent networks. Automatica, 2008, 44(3): 846–850.
W. Ren, E. Atkins. Distributed multi-vehicle coordinated control via local information exchange. International Journal of Robust and Nonlinear Control, 2007, 17(10/11): 1002–1033.
Z. Li, Z. Duan, G. Chen, et al. Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010, 57(1): 213–224.
S. E. Tuna. Synchronizing linear systems via partial-state coupling. Automatica, 2008, 44(8): 2179–2184.
J. Huang. Nonlinear Output Regulation: Theory and Applications. Philadelphia: SIAM, 2004.
Y. Su, J. Huang. Cooperative output regulation of linear multiagent systems. IEEE Transactions on Automatic Control, 2012, 57(4): 1062–1066.
P. Wieland, R. Sepulchre, F. Allgöwer. An internal model principle is necessary and sufficient for linear output synchronization. Automatica, 2011, 47(5): 1068–1074.
L. Yu, J. Wang. Robust cooperative control for multi-agent systems via distributed output regulation. Systems & Control Letters, 2013, 62(11): 1049–1056.
Q. Jiao, H. Modares, F. L. Lewis, et al. DistributedL 2-gain outputfeedback control of homogeneous and heterogeneous systems. Automatica, 2016, 71: 361–368.
X. Wang, Y. Hong, J. Huang, et al. A distributed control approach to a robust output regulation problem for multi-agent linear systems. IEEE Transactions on Automatic Control, 2010, 55(12): 2891–2895.
Y. Su, Y. Hong, J. Huang. A general result on the robust cooperative output regulation for linear uncertain multi-agent systems. IEEE Transactions on Automatic Control, 2013, 58(5): 1275–1279.
C. Huang, X. Ye. Cooperative output regulation of heterogeneous multi-agent systems: An H∞ criterion. IEEE Transactions on Automatic Control, 2014, 59(1): 267–273.
F. A. Yaghmaie, F. L. Lewis, R. Su. Output regulation of linear heterogeneous multi-agent systems via output and state feedback. Automatica, 2016, 67: 157–164.
H. F. Grip, T. Yang, A. Saberi, et al. Output synchronization for heterogeneous networks of non-introspective agents. Automatica, 2012, 48(10): 2444–2453.
T. Yang, A. A. Stoorvogel, H. F. Grip, et al. Semi-global regulation of output synchronization for heterogeneous networks of nonintrospective, invertible agents subject to actuator saturation. International journal of robust and nonlinear control, 2014, 24(3): 548–566.
Z. Meng, T. Yang, D. V. Dimarogonas, et al. Coordinated output regulation of heterogeneous linear systems under switching topologies. Automatica, 2015, 53: 362–368.
H. F. Grip, A. Saberi, A. A. Stoorvogel. Synchronization in networks of minimum-phase, non-introspective agents without exchange of controller states: homogeneous, heterogeneous, and nonlinear. Automatica, 2015, 54: 246–255.
H. K. Khalil. Nonlinear Systems. 3rd ed. New Jersey: Prentice Hall, 2002.
S. Skogestad, I. Postlethwaite. Multivariable Feedback Control: Analysis and Design. New York: Wiley, 2007.
J. Gadewadikar, F. L. Lewis, M. A. Khalaf. Necessary and sufficient conditions for H∞ static output-feedback control. Journal of Guidance, Control, and Dynamics, 2006, 29(4): 915–920.
I. R. Petersen. Disturbance attenuation and H∞ optimization: A design method based on the algebraic riccati equation. IEEE Transactions on Automatic Control, 1987, 32(5): 427–429.
F. L. Lewis, V. L. Syrmos. Optimal Control. 3rd ed. New York: Wiley, 2011.
B. L. Stevens, F. L. Lewis. Aircraft Control and Simulation. 3rd ed. New Jersey: Wiley, 2003.
J. Gadewadikar, F. L. Lewis, L. Xie, et al. Parameterization of all stabilizing H∞ static state-feedback gains: application to outputfeedback design. Automatica, 2007, 43(9): 1597–1604.
F. Gerrish, A. J. B. Ward. Sylvester’s matrix equation and roth’s removal rule. The Mathematical Gazette, 1998, 82(495): 423–430.
S. Bittanti, P. Colaneri. Lyapunov and riccati equations: periodic inertia theorems. IEEE Transactions on Automatic Control, 1986, 31(7): 659–661.