A unified amorphous–crystalline viscoplastic hardening law for non-isothermal modelling of thermoplastics and thermosets

International Journal of Plasticity - Tập 159 - Trang 103469 - 2022
P. Hao1,2, Z. Dai1,3, V. Laheri1, F.A. Gilabert1
1Ghent University (UGent), Department of Materials, Textiles and Chemical Engineering (MaTCh), Mechanics of Materials and Structures (MMS), Tech Lane Ghent Science Park - Campus A, Technologiepark Zwijnaarde 46, 9052 Zwijnaarde, Belgium
2SIM M3 Program, Technologiepark Zwijnaarde 48, 9052, Zwijnaarde, Belgium
3Tongji University, Key Laboratory of Road and Traffic Engineering of the Ministry of Education, 4800 Cao’an Road, 201804 Shanghai, PR China

Tài liệu tham khảo

Abdul-Hameed, 2014, A two-phase hyperelastic-viscoplastic constitutive model for semi-crystalline polymers: Application to polyethylene materials with a variable range of crystal fractions, J. Mech. Behav. Biomed. Mater., 37, 323, 10.1016/j.jmbbm.2014.04.016 Ahzi, 2003, Modeling of deformation behavior and strain-induced crystallization in poly(ethylene terephthalate) above the glass transition temperature, Mech. Mater., 35, 1139, 10.1016/S0167-6636(03)00004-8 AlMaadeed, 2014, Mechanical, sorption and adhesive properties of composites based on low density polyethylene filled with date palm wood powder, Mater. Des., 53, 29, 10.1016/j.matdes.2013.05.093 Ames, 2009, A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part II: Applications, Int. J. Plast., 25, 1495, 10.1016/j.ijplas.2008.11.005 Anand, 2009, A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part I: Formulation, Int. J. Plast., 25, 1474, 10.1016/j.ijplas.2008.11.004 Argon, 1973, A theory for the low-temperature plastic deformation of glassy polymers, Phil. Mag., 28, 839, 10.1080/14786437308220987 Arruda, 1993, Evolution of plastic anisotropy in amorphous polymers during finite straining, Int. J. Plast., 9, 697, 10.1016/0749-6419(93)90034-N Arruda, 1995, Temperature and thermomechanical coupling on the finite strain deformation of glassy polymers, Mech. Mater., 19, 193, 10.1016/0167-6636(94)00034-E Ayoub, 2020, Modeling the visco-hyperelastic–viscoplastic behavior of photodegraded semi-crystalline low-density polyethylene films, Int. J. Solids Struct., 204–205, 187, 10.1016/j.ijsolstr.2020.08.025 Ayoub, 2011, Effects of crystal content on the mechanical behaviour of polyethylene under finite strains: Experiments and constitutive modelling, Int. J. Plast., 27, 492, 10.1016/j.ijplas.2010.07.005 Ayoub, 2010, Modelling large deformation behaviour under loading–unloading of semicrystalline polymers: Application to a high density polyethylene, Int. J. Plast., 26, 329, 10.1016/j.ijplas.2009.07.005 Benaarbia, 2014, Influence of relative humidity and loading frequency on the PA6.6 cyclic thermomechanical behavior: Part I. mechanical and thermal aspects, Polym. Test., 40, 290, 10.1016/j.polymertesting.2014.09.019 Boyce, 1988, Large inelastic deformation of glassy polymers. part I: rate dependent constitutive model, Mech. Mater., 7, 15, 10.1016/0167-6636(88)90003-8 Boyce, 2000, Constitutive model for the finite deformation stress–strain behavior of poly(ethylene terephthalate) above the glass transition, Polymer, 41, 2183, 10.1016/S0032-3861(99)00406-1 Boyce, 1989, On the kinematics of finite strain plasticity, J. Mech. Phys. Solids, 37, 647, 10.1016/0022-5096(89)90033-1 Brooks, 1992, Investigation into double yield points in polyethylene, Polymer, 33, 1872, 10.1016/0032-3861(92)90486-G Cayzac, 2013, Damage based constitutive relationships in semi-crystalline polymer by using multi-mechanisms model, Int. J. Plast., 51, 47, 10.1016/j.ijplas.2013.06.008 Chen, 2019, Micromechanical modelling of the overall response of plain woven polymer matrix composites, Internat. J. Engrg. Sci., 145, 10.1016/j.ijengsci.2019.103163 Chowdhury, 2008, Effects of manufacturing-induced voids on local failure in polymer-basedcomposites, J. Eng. Mater. Technol., 130 Dai, 2022, Understanding fracture mechanisms via validated virtual tests of encapsulation-based self-healing concrete beams, Mater. Des., 213, 10.1016/j.matdes.2021.110299 Demets, 2022, Macromolecular Insights into the Altered Mechanical Deformation Mechanisms of Non-Polyolefin Contaminated Polyolefins, Polymers, 14, 239, 10.3390/polym14020239 Detrez, 2011, Plasticity/damage coupling in semi-crystalline polymers prior to yielding: Micromechanisms and damage law identification, Polymer, 52, 1998, 10.1016/j.polymer.2011.03.012 van Dommelen, 2003, Micromechanical modeling of the elasto-viscoplastic behavior of semi-crystalline polymers, J. Mech. Phys. Solids, 51, 519, 10.1016/S0022-5096(02)00063-7 Drozdov, 2003, Non-linear viscoelasticity and viscoplasticity of isotactic polypropylene, Internat. J. Engrg. Sci., 41, 2335, 10.1016/S0020-7225(03)00239-8 Farrokh, 2010, A strain rate dependent yield criterion for isotropic polymers: Low to high rates of loading, Eur. J. Mech. A Solids, 29, 274, 10.1016/j.euromechsol.2009.08.004 Felder, 2020, Incorporating crystallinity distributions into a thermo-mechanically coupled constitutive model for semi-crystalline polymers, Int. J. Plast., 135, 10.1016/j.ijplas.2020.102751 Ferreiro, 2004, Shear banding in strained semicrystalline polyamide 6 films as revealed by atomic force microscopy: role of the amorphous phase, J. Polym. Sci. B, 42, 687, 10.1002/polb.10731 Garcia-Gonzalez, 2017, A hyperelastic-thermoviscoplastic constitutive model for semi-crystalline polymers: Application to PEEK under dynamic loading conditions, Int. J. Plast., 88, 27, 10.1016/j.ijplas.2016.09.011 Greene, 2021, 3 - Microstructures of polymers, 27 Gueguen, 2008, Micromechanically based formulation of the cooperative model for the yield behavior of semi-crystalline polymers, Acta Mater., 56, 1650, 10.1016/j.actamat.2007.12.015 Hachour, 2014, Experiments and modeling of high-crystalline polyethylene yielding under different stress states, Int. J. Plast., 54, 1, 10.1016/j.ijplas.2013.06.004 Hao, 2022, A rate-dependent constitutive model predicting the double yield phenomenon, self-heating and thermal softening in semi-crystalline polymers, Int. J. Plast., 153, 10.1016/j.ijplas.2022.103233 Humbert, 2011, A re-examination of the elastic modulus dependence on crystallinity in semi-crystalline polymers, Polymer, 52, 4899, 10.1016/j.polymer.2011.07.060 ISO 527-2:2012(en), 2012 Johnsen, 2019, A thermo-elasto-viscoplastic constitutive model for polymers, J. Mech. Phys. Solids, 124, 681, 10.1016/j.jmps.2018.11.018 Jordan, 2016, Mechanical properties of low density polyethylene, J. Dyn. Behav. Mater., 2, 411, 10.1007/s40870-016-0076-0 Jordan, 2020, Neural network model describing the temperature- and rate-dependent stress–strain response of polypropylene, Int. J. Plast., 135, 10.1016/j.ijplas.2020.102811 Khan, 2006, Thermo-mechanical response of nylon 101 under uniaxial and multi-axial loadings: Part I, Experimental results over wide ranges of temperatures and strain rates, Int. J. Plast., 22, 1506, 10.1016/j.ijplas.2005.10.001 Krempl, 1987, Models of viscoplasticity some comments on equilibrium (back) stress and drag stress, Acta Mech., 69, 25, 10.1007/BF01175712 Laiarinandrasana, 2016, Structural versus microstructural evolution of semi-crystalline polymers during necking under tension: Influence of the skin-core effects, the relative humidity and the strain rate, Polym. Test., 55, 297, 10.1016/j.polymertesting.2016.09.012 Lee, 1993, Simulation of large strain plastic deformation and texture evolution in high density polyethylene, Polymer, 34, 3555, 10.1016/0032-3861(93)90039-D Lee, 1993, Micromechanical modeling of large plastic deformation and texture evolution in semi-crystalline polymers, J. Mech. Phys. Solids, 41, 1651, 10.1016/0022-5096(93)90018-B Li, 2019, Thermomechanical model for monotonic and cyclic loading of PEEK, Mech. Mater., 129, 113, 10.1016/j.mechmat.2018.11.005 Luo, 2009, Tensile behaviors of polyamide 6/UHLE blends, J. Mater. Sci., 44, 3694, 10.1007/s10853-009-3494-8 Luo, 2021, Development of dynamic constitutive model of epoxy resin considering temperature and strain rate effects using experimental methods, Mech. Mater., 159, 10.1016/j.mechmat.2021.103887 Mahieux, 2001, Property modeling across transition temperatures in polymers: a robust stiffness–temperature model, Polymer, 42, 3281, 10.1016/S0032-3861(00)00614-5 Mulliken, 2006, Mechanics of the rate-dependent elastic–plastic deformation of glassy polymers from low to high strain rates, Int. J. Solids Struct., 43, 1331, 10.1016/j.ijsolstr.2005.04.016 Negahban, 1997, Thermodynamic modeling of the thermomechanical effects of polymer crystallization: A general theoretical structure, Internat. J. Engrg. Sci., 35, 277, 10.1016/S0020-7225(96)00078-X Nikolov, 2000, A micro/macro constitutive model for the small-deformation behavior of polyethylene, Polymer, 41, 1883, 10.1016/S0032-3861(99)00330-4 Nikolov, 2002, Multi-scale constitutive modeling of the small deformations of semi-crystalline polymers, J. Mech. Phys. Solids, 50, 2275, 10.1016/S0022-5096(02)00036-4 Parodi, 2018, Structure–properties relations for polyamide 6, part 1: influence of the thermal history during compression moulding on deformation and failure kinetics, Polymers, 10, 710, 10.3390/polym10070710 Parodi, 2018, Prediction of plasticity-controlled failure in polyamide 6: Influence of temperature and relative humidity, J. Appl. Polym. Sci., 135, 45942, 10.1002/app.45942 Poulain, 2014, Finite-strain elasto-viscoplastic behavior of an epoxy resin: Experiments and modeling in the glassy regime, Int. J. Plast., 62, 138, 10.1016/j.ijplas.2014.07.002 Rae, 2007, The mechanical properties of poly(ether-ether-ketone) (PEEK) with emphasis on the large compressive strain response, Polymer, 48, 598, 10.1016/j.polymer.2006.11.032 Ramkumar, 2010, Experimental and theoretical investigation of a polymer subjected to cyclic loading conditions, Internat. J. Engrg. Sci., 48, 101, 10.1016/j.ijengsci.2009.07.002 Rozanski, 2013, Plastic yielding of semicrystalline polymers affected by amorphous phase, Int. J. Plast., 41, 14, 10.1016/j.ijplas.2012.07.008 Rozanski, 2015, Crystalline lamellae fragmentation during drawing of polypropylene, Macromolecules, 48, 5310, 10.1021/acs.macromol.5b01180 Sedighiamiri, 2011, Micromechanical modeling of the deformation kinetics of semicrystalline polymers, J. Polym. Sci. B, 49, 1297, 10.1002/polb.22297 Shen, 2019, Thermo-elastic-viscoplastic-damage model for self-heating and mechanical behavior of thermoplastic polymers, Int. J. Plast., 121, 227, 10.1016/j.ijplas.2019.06.003 Song, 2019, A thermodynamically consistent model for viscoelastic polymers undergoing microstructural changes, Internat. J. Engrg. Sci., 142, 106, 10.1016/j.ijengsci.2019.05.009 Srivastava, 2010, A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition, Int. J. Plast., 26, 1138, 10.1016/j.ijplas.2010.01.004 Thomas, 2009, Plastic deformation of spherulitic semi-crystalline polymers: An in situ AFM study of polybutene under tensile drawing, Polymer, 50, 3714, 10.1016/j.polymer.2009.06.023 Uchida, 2013, Micro-, meso- to macroscopic modeling of deformation behavior of semi-crystalline polymer, Int. J. Plast., 49, 164, 10.1016/j.ijplas.2013.03.007 Venkatraman, 2019, Developing high performance PA 11/cellulose nanocomposites for industrial-scale melt processing, Composites B, 174, 10.1016/j.compositesb.2019.106988 Voyiadjis, 2014, Strain gradient plasticity for amorphous and crystalline polymers with application to micro- and nano-scale deformation analysis, Polymer, 55, 4182, 10.1016/j.polymer.2014.06.015 Wu, 1993, On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers, J. Mech. Phys. Solids, 41, 427, 10.1016/0022-5096(93)90043-F Xiong, 2013, In-situ SAXS study and modeling of the cavitation/crystal-shear competition in semi-crystalline polymers: Influence of temperature and microstructure in polyethylene, Polymer, 54, 5408, 10.1016/j.polymer.2013.07.055 Yan, 2021, Continuum-based modeling large-strain plastic deformation of semi-crystalline polyethylene systems: Implication of texturing and amorphicity, Mech. Mater., 162, 10.1016/j.mechmat.2021.104060 Zaïri, 2008, Modelling of the elasto-viscoplastic damage behaviour of glassy polymers, Int. J. Plast., 24, 945, 10.1016/j.ijplas.2007.08.001 Zhang, 2004, Study of poly(trimethylene terephthalate) as an engineering thermoplastics material, J. Appl. Polym. Sci., 91, 1657, 10.1002/app.13322 Zhang, 2019, Quantification of strain-induced damage in semi-crystalline polymers: a review, J. Mater. Sci., 54, 62, 10.1007/s10853-018-2859-2