A unified amorphous–crystalline viscoplastic hardening law for non-isothermal modelling of thermoplastics and thermosets
Tài liệu tham khảo
Abdul-Hameed, 2014, A two-phase hyperelastic-viscoplastic constitutive model for semi-crystalline polymers: Application to polyethylene materials with a variable range of crystal fractions, J. Mech. Behav. Biomed. Mater., 37, 323, 10.1016/j.jmbbm.2014.04.016
Ahzi, 2003, Modeling of deformation behavior and strain-induced crystallization in poly(ethylene terephthalate) above the glass transition temperature, Mech. Mater., 35, 1139, 10.1016/S0167-6636(03)00004-8
AlMaadeed, 2014, Mechanical, sorption and adhesive properties of composites based on low density polyethylene filled with date palm wood powder, Mater. Des., 53, 29, 10.1016/j.matdes.2013.05.093
Ames, 2009, A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part II: Applications, Int. J. Plast., 25, 1495, 10.1016/j.ijplas.2008.11.005
Anand, 2009, A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part I: Formulation, Int. J. Plast., 25, 1474, 10.1016/j.ijplas.2008.11.004
Argon, 1973, A theory for the low-temperature plastic deformation of glassy polymers, Phil. Mag., 28, 839, 10.1080/14786437308220987
Arruda, 1993, Evolution of plastic anisotropy in amorphous polymers during finite straining, Int. J. Plast., 9, 697, 10.1016/0749-6419(93)90034-N
Arruda, 1995, Temperature and thermomechanical coupling on the finite strain deformation of glassy polymers, Mech. Mater., 19, 193, 10.1016/0167-6636(94)00034-E
Ayoub, 2020, Modeling the visco-hyperelastic–viscoplastic behavior of photodegraded semi-crystalline low-density polyethylene films, Int. J. Solids Struct., 204–205, 187, 10.1016/j.ijsolstr.2020.08.025
Ayoub, 2011, Effects of crystal content on the mechanical behaviour of polyethylene under finite strains: Experiments and constitutive modelling, Int. J. Plast., 27, 492, 10.1016/j.ijplas.2010.07.005
Ayoub, 2010, Modelling large deformation behaviour under loading–unloading of semicrystalline polymers: Application to a high density polyethylene, Int. J. Plast., 26, 329, 10.1016/j.ijplas.2009.07.005
Benaarbia, 2014, Influence of relative humidity and loading frequency on the PA6.6 cyclic thermomechanical behavior: Part I. mechanical and thermal aspects, Polym. Test., 40, 290, 10.1016/j.polymertesting.2014.09.019
Boyce, 1988, Large inelastic deformation of glassy polymers. part I: rate dependent constitutive model, Mech. Mater., 7, 15, 10.1016/0167-6636(88)90003-8
Boyce, 2000, Constitutive model for the finite deformation stress–strain behavior of poly(ethylene terephthalate) above the glass transition, Polymer, 41, 2183, 10.1016/S0032-3861(99)00406-1
Boyce, 1989, On the kinematics of finite strain plasticity, J. Mech. Phys. Solids, 37, 647, 10.1016/0022-5096(89)90033-1
Brooks, 1992, Investigation into double yield points in polyethylene, Polymer, 33, 1872, 10.1016/0032-3861(92)90486-G
Cayzac, 2013, Damage based constitutive relationships in semi-crystalline polymer by using multi-mechanisms model, Int. J. Plast., 51, 47, 10.1016/j.ijplas.2013.06.008
Chen, 2019, Micromechanical modelling of the overall response of plain woven polymer matrix composites, Internat. J. Engrg. Sci., 145, 10.1016/j.ijengsci.2019.103163
Chowdhury, 2008, Effects of manufacturing-induced voids on local failure in polymer-basedcomposites, J. Eng. Mater. Technol., 130
Dai, 2022, Understanding fracture mechanisms via validated virtual tests of encapsulation-based self-healing concrete beams, Mater. Des., 213, 10.1016/j.matdes.2021.110299
Demets, 2022, Macromolecular Insights into the Altered Mechanical Deformation Mechanisms of Non-Polyolefin Contaminated Polyolefins, Polymers, 14, 239, 10.3390/polym14020239
Detrez, 2011, Plasticity/damage coupling in semi-crystalline polymers prior to yielding: Micromechanisms and damage law identification, Polymer, 52, 1998, 10.1016/j.polymer.2011.03.012
van Dommelen, 2003, Micromechanical modeling of the elasto-viscoplastic behavior of semi-crystalline polymers, J. Mech. Phys. Solids, 51, 519, 10.1016/S0022-5096(02)00063-7
Drozdov, 2003, Non-linear viscoelasticity and viscoplasticity of isotactic polypropylene, Internat. J. Engrg. Sci., 41, 2335, 10.1016/S0020-7225(03)00239-8
Farrokh, 2010, A strain rate dependent yield criterion for isotropic polymers: Low to high rates of loading, Eur. J. Mech. A Solids, 29, 274, 10.1016/j.euromechsol.2009.08.004
Felder, 2020, Incorporating crystallinity distributions into a thermo-mechanically coupled constitutive model for semi-crystalline polymers, Int. J. Plast., 135, 10.1016/j.ijplas.2020.102751
Ferreiro, 2004, Shear banding in strained semicrystalline polyamide 6 films as revealed by atomic force microscopy: role of the amorphous phase, J. Polym. Sci. B, 42, 687, 10.1002/polb.10731
Garcia-Gonzalez, 2017, A hyperelastic-thermoviscoplastic constitutive model for semi-crystalline polymers: Application to PEEK under dynamic loading conditions, Int. J. Plast., 88, 27, 10.1016/j.ijplas.2016.09.011
Greene, 2021, 3 - Microstructures of polymers, 27
Gueguen, 2008, Micromechanically based formulation of the cooperative model for the yield behavior of semi-crystalline polymers, Acta Mater., 56, 1650, 10.1016/j.actamat.2007.12.015
Hachour, 2014, Experiments and modeling of high-crystalline polyethylene yielding under different stress states, Int. J. Plast., 54, 1, 10.1016/j.ijplas.2013.06.004
Hao, 2022, A rate-dependent constitutive model predicting the double yield phenomenon, self-heating and thermal softening in semi-crystalline polymers, Int. J. Plast., 153, 10.1016/j.ijplas.2022.103233
Humbert, 2011, A re-examination of the elastic modulus dependence on crystallinity in semi-crystalline polymers, Polymer, 52, 4899, 10.1016/j.polymer.2011.07.060
ISO 527-2:2012(en), 2012
Johnsen, 2019, A thermo-elasto-viscoplastic constitutive model for polymers, J. Mech. Phys. Solids, 124, 681, 10.1016/j.jmps.2018.11.018
Jordan, 2016, Mechanical properties of low density polyethylene, J. Dyn. Behav. Mater., 2, 411, 10.1007/s40870-016-0076-0
Jordan, 2020, Neural network model describing the temperature- and rate-dependent stress–strain response of polypropylene, Int. J. Plast., 135, 10.1016/j.ijplas.2020.102811
Khan, 2006, Thermo-mechanical response of nylon 101 under uniaxial and multi-axial loadings: Part I, Experimental results over wide ranges of temperatures and strain rates, Int. J. Plast., 22, 1506, 10.1016/j.ijplas.2005.10.001
Krempl, 1987, Models of viscoplasticity some comments on equilibrium (back) stress and drag stress, Acta Mech., 69, 25, 10.1007/BF01175712
Laiarinandrasana, 2016, Structural versus microstructural evolution of semi-crystalline polymers during necking under tension: Influence of the skin-core effects, the relative humidity and the strain rate, Polym. Test., 55, 297, 10.1016/j.polymertesting.2016.09.012
Lee, 1993, Simulation of large strain plastic deformation and texture evolution in high density polyethylene, Polymer, 34, 3555, 10.1016/0032-3861(93)90039-D
Lee, 1993, Micromechanical modeling of large plastic deformation and texture evolution in semi-crystalline polymers, J. Mech. Phys. Solids, 41, 1651, 10.1016/0022-5096(93)90018-B
Li, 2019, Thermomechanical model for monotonic and cyclic loading of PEEK, Mech. Mater., 129, 113, 10.1016/j.mechmat.2018.11.005
Luo, 2009, Tensile behaviors of polyamide 6/UHLE blends, J. Mater. Sci., 44, 3694, 10.1007/s10853-009-3494-8
Luo, 2021, Development of dynamic constitutive model of epoxy resin considering temperature and strain rate effects using experimental methods, Mech. Mater., 159, 10.1016/j.mechmat.2021.103887
Mahieux, 2001, Property modeling across transition temperatures in polymers: a robust stiffness–temperature model, Polymer, 42, 3281, 10.1016/S0032-3861(00)00614-5
Mulliken, 2006, Mechanics of the rate-dependent elastic–plastic deformation of glassy polymers from low to high strain rates, Int. J. Solids Struct., 43, 1331, 10.1016/j.ijsolstr.2005.04.016
Negahban, 1997, Thermodynamic modeling of the thermomechanical effects of polymer crystallization: A general theoretical structure, Internat. J. Engrg. Sci., 35, 277, 10.1016/S0020-7225(96)00078-X
Nikolov, 2000, A micro/macro constitutive model for the small-deformation behavior of polyethylene, Polymer, 41, 1883, 10.1016/S0032-3861(99)00330-4
Nikolov, 2002, Multi-scale constitutive modeling of the small deformations of semi-crystalline polymers, J. Mech. Phys. Solids, 50, 2275, 10.1016/S0022-5096(02)00036-4
Parodi, 2018, Structure–properties relations for polyamide 6, part 1: influence of the thermal history during compression moulding on deformation and failure kinetics, Polymers, 10, 710, 10.3390/polym10070710
Parodi, 2018, Prediction of plasticity-controlled failure in polyamide 6: Influence of temperature and relative humidity, J. Appl. Polym. Sci., 135, 45942, 10.1002/app.45942
Poulain, 2014, Finite-strain elasto-viscoplastic behavior of an epoxy resin: Experiments and modeling in the glassy regime, Int. J. Plast., 62, 138, 10.1016/j.ijplas.2014.07.002
Rae, 2007, The mechanical properties of poly(ether-ether-ketone) (PEEK) with emphasis on the large compressive strain response, Polymer, 48, 598, 10.1016/j.polymer.2006.11.032
Ramkumar, 2010, Experimental and theoretical investigation of a polymer subjected to cyclic loading conditions, Internat. J. Engrg. Sci., 48, 101, 10.1016/j.ijengsci.2009.07.002
Rozanski, 2013, Plastic yielding of semicrystalline polymers affected by amorphous phase, Int. J. Plast., 41, 14, 10.1016/j.ijplas.2012.07.008
Rozanski, 2015, Crystalline lamellae fragmentation during drawing of polypropylene, Macromolecules, 48, 5310, 10.1021/acs.macromol.5b01180
Sedighiamiri, 2011, Micromechanical modeling of the deformation kinetics of semicrystalline polymers, J. Polym. Sci. B, 49, 1297, 10.1002/polb.22297
Shen, 2019, Thermo-elastic-viscoplastic-damage model for self-heating and mechanical behavior of thermoplastic polymers, Int. J. Plast., 121, 227, 10.1016/j.ijplas.2019.06.003
Song, 2019, A thermodynamically consistent model for viscoelastic polymers undergoing microstructural changes, Internat. J. Engrg. Sci., 142, 106, 10.1016/j.ijengsci.2019.05.009
Srivastava, 2010, A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition, Int. J. Plast., 26, 1138, 10.1016/j.ijplas.2010.01.004
Thomas, 2009, Plastic deformation of spherulitic semi-crystalline polymers: An in situ AFM study of polybutene under tensile drawing, Polymer, 50, 3714, 10.1016/j.polymer.2009.06.023
Uchida, 2013, Micro-, meso- to macroscopic modeling of deformation behavior of semi-crystalline polymer, Int. J. Plast., 49, 164, 10.1016/j.ijplas.2013.03.007
Venkatraman, 2019, Developing high performance PA 11/cellulose nanocomposites for industrial-scale melt processing, Composites B, 174, 10.1016/j.compositesb.2019.106988
Voyiadjis, 2014, Strain gradient plasticity for amorphous and crystalline polymers with application to micro- and nano-scale deformation analysis, Polymer, 55, 4182, 10.1016/j.polymer.2014.06.015
Wu, 1993, On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers, J. Mech. Phys. Solids, 41, 427, 10.1016/0022-5096(93)90043-F
Xiong, 2013, In-situ SAXS study and modeling of the cavitation/crystal-shear competition in semi-crystalline polymers: Influence of temperature and microstructure in polyethylene, Polymer, 54, 5408, 10.1016/j.polymer.2013.07.055
Yan, 2021, Continuum-based modeling large-strain plastic deformation of semi-crystalline polyethylene systems: Implication of texturing and amorphicity, Mech. Mater., 162, 10.1016/j.mechmat.2021.104060
Zaïri, 2008, Modelling of the elasto-viscoplastic damage behaviour of glassy polymers, Int. J. Plast., 24, 945, 10.1016/j.ijplas.2007.08.001
Zhang, 2004, Study of poly(trimethylene terephthalate) as an engineering thermoplastics material, J. Appl. Polym. Sci., 91, 1657, 10.1002/app.13322
Zhang, 2019, Quantification of strain-induced damage in semi-crystalline polymers: a review, J. Mater. Sci., 54, 62, 10.1007/s10853-018-2859-2