A two-step approach for electrochemical deposition of Cu–Zn–Sn and Se precursors for CZTSe solar cells
Tóm tắt
Từ khóa
Tài liệu tham khảo
Repins, 2008, 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor, Progress in Photovoltaics: Research and Applications, 16, 235, 10.1002/pip.822
Kushiya, 2009, Key near-term R&D issues for continuous improvement in CIS-based thin-film PV modules, Solar Energy Materials and Solar Cells, 93, 1037, 10.1016/j.solmat.2008.11.063
Todorov, 2010, High-efficiency solar cell with earth abundant liquid-processed absorber, Advanced Materials, 22, E156, 10.1002/adma.200904155
Schurr, 2009, The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu–Zn–Sn precursors, Thin Solid Films, 517, 2465, 10.1016/j.tsf.2008.11.019
Ennaoui, 2009, Cu2ZnSnS4 thin film solar cells from electroplated precursors: novel low-cost perspective, Thin Solid Films, 517, 2511, 10.1016/j.tsf.2008.11.061
Scragg, 2008, Towards sustainable materials for solar energy conversion: preparation and photoelectrochemical characterization of Cu2ZnSnS4, Electrochemistry Communications, 10, 639, 10.1016/j.elecom.2008.02.008
Scragg, 2009, Synthesis and characterization of Cu2ZnSnS4 absorber layers by an electrodeposition-annealing route, Thin Solid Films, 517, 2481, 10.1016/j.tsf.2008.11.022
Araki, 2009, Preparation of Cu2ZnSnS4 thin films by sulphurizing electroplated precursors, Solar Energy Materials and Solar Cells, 93, 996, 10.1016/j.solmat.2008.11.045
Araki, 2009, Preparation of Cu2ZnSnS4 thin films by sulphurization of coelectroplated Cu–Zn–Sn precursors, Physica Status Solidi C: Current Topics in Solid State Physics, 6, 1266, 10.1002/pssc.200881182
Kurihara, 2009, Kesterite absorber layer uniformity from electrodeposited pre-cursors, Physica Status Solidi C: Current Topics in Solid State Physics, 6, 1241, 10.1002/pssc.200881154
Pawar, 2010, Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for solar cell application, Electrochimica Acta, 55, 4057, 10.1016/j.electacta.2010.02.051
Pawar, 2010, Effect of complexing agent on the properties of electrochemically deposited Cu2ZnSnS4 (CZTS) thin films, Applied Surface Science, 257, 1786, 10.1016/j.apsusc.2010.09.016
Chan, 2010, Preparation of Cu2ZnSnS4 films by electrodeposition using ionic liquids, Solar Energy Materials and Solar Cells, 94, 207, 10.1016/j.solmat.2009.09.003
Scragg, 2010, A 3.2% efficient kesterite device from electrodeposited stacked elemental layers, Journal of Electroanalytical Chemistry, 646, 52, 10.1016/j.jelechem.2010.01.008
Ganchev, 2010, Formation of Cu2ZnSnSe4 thin films by selenization of electrodeposited stacked binary alloy layers, Energy Procedia, 2, 65, 10.1016/j.egypro.2010.07.012
Niaura, 1997, Moving spectroelectrochemical cell for surface Raman spectroscopy, Journal of Raman Spectroscopy, 28, 1009, 10.1002/(SICI)1097-4555(199712)28:12<1009::AID-JRS196>3.0.CO;2-G
Katagiri, 2008, Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells using preferential etching technique, Applied Physics Express, 1, 041201, 10.1143/APEX.1.041201
Zoppi, 2009, Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors, Progress in Photovoltaics: Research and Applications, 17, 315, 10.1002/pip.886
Volobujeva, 2009, Cu2ZnSnSe4 films by selenization of Sn–Zn–Cu sequential films, Journal of Physics and Chemistry of Solids, 70, 567, 10.1016/j.jpcs.2008.12.010
Katagiri, 2009, Development of CZTS-based thin film solar cells, Thin Solid Films, 517, 2455, 10.1016/j.tsf.2008.11.002
Olekseyuk, 2002, Single crystal preparation and crystal structure of the Cu2Zn/Cd,Hg/SnSe4 compounds, Journal of Alloys and Compounds, 340, 141, 10.1016/S0925-8388(02)00006-3
Chen, 2009, Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: first-principles insights, Applied Physics Letters, 94, 041903, 10.1063/1.3074499
Schorr, 2007, Structural aspects of adamantine like multinary chalcogenides, Thin Solid Films, 515, 5985, 10.1016/j.tsf.2006.12.100
Solome, 2009, Morphological and structural characterization of Cu2ZnSnSe4 thin films grown by selenization of elemental precursor layers, Thin Solid Films, 517, 2531, 10.1016/j.tsf.2008.11.034
Salome, 2010, Growth pressure dependence of Cu2ZnSnSe4 properties, Solar Energy Materials and Solar Cells, 94, 2176, 10.1016/j.solmat.2010.07.008
Ahn, 2010, Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: on the discrepancies of reported band gap values, Applied Physics Letters, 97, 021905, 10.1063/1.3457172
Altosaar, 2008, Cu2Zn1–xCdxSn(Se1–ySy)4 solid solutions as absorber materials for solar cells, Physica Status Solidi A: Applications and Materials Science, 205, 167, 10.1002/pssa.200776839
Boolchand, 1988, Structural origin of glass formation in group IV diselenides, Phosphorus and Sulphur and the Related Elements, 38, 305, 10.1080/03086648808079726
Ponosov, 2007, Pressure-induced phase transition in Pb1-xSnxSe studied by Raman spectra, Journal of the Physical Society of Japan, 76, 15, 10.1143/JPSJS.76SA.15
Dinger, 2001, Lattice dynamics of CdS/ZnSe strained layer superlattices studied by Raman scattering, Physical Review B, 64, 245310, 10.1103/PhysRevB.64.245310
Panfilova, 2010, Investigations of strain in ZnMgSe/ZnSe micro disks by means of the micro-Raman imaging, Physica Status Solidi C: Current Topics in Solid State Physics, 7, 1675, 10.1002/pssc.200983210
Chen, 2010, Solvothermal synthesis and characterization of chalcopyrite CuInSe2 nanoparticles, Nanoscale Research Letters, 5, 217, 10.1007/s11671-009-9468-6
Zhang, 2006, Synthesis and characterization of hexagonal CuSe nanotubes by templating against trigonal Se nanotubes, Crystal Growth and Design, 6, 2809, 10.1021/cg0604430
Kumar, 2010, Structural, optical and Raman studies of template-free solvothermally synthesised ZnSe/ZnSe:Ce3+ nanoparticles, Journal of Luminescence, 130, 2026, 10.1016/j.jlumin.2010.05.021