A two-grid stabilized mixed finite element method for semilinear elliptic equations

Applied Mathematical Modelling - Tập 37 - Trang 7037-7046 - 2013
Zhifeng Weng1,2, Xinlong Feng1, Demin Liu1
1College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, PR China
2School of Mathematics and Statistics, Wuhan University, Wuhan 430072, PR China

Tài liệu tham khảo

Xu, 1994, A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput., 15, 231, 10.1137/0915016 Xu, 1996, Two-grid finite element discretization techniques for linear and nonlinear PDE, SIAM J. Numer. Anal., 33, 1759, 10.1137/S0036142992232949 Wu, 1999, A two-grid method for mixed finite-element solutions of reaction-diffusion equations, Numer. Meth. PDEs, 15, 589, 10.1002/(SICI)1098-2426(199909)15:5<589::AID-NUM6>3.0.CO;2-W Dawson, 1994, Two-grid method for mixed finite element approximations of non-linear parabolic equations, Contemp. Math., 180, 91 Chen, 2003, A two-grid method for expanded mixed finite-element solution of semilinear reaction-diffusion equations, Int. J. Numer. Meth. Eng., 57, 139, 10.1002/nme.668 Chen, 2009, Analysis of two-grid methods for nonlinear parabolic equations by expanded mixed finite element methods, Adv. Appl. Math. Mech., 1, 1, 10.4208/aamm.09-m09S09 Chen, 2007, Analysis of two-grid methods for reaction diffusion equations by expanded mixed finite element methods, Int. J. Numer. Meth. Eng., 69, 408, 10.1002/nme.1775 Chen, 2011, Two-grid method for nonlinear reaction-diffusion equations by mixed fnite element methods, J. Sci. Comput., 49, 383, 10.1007/s10915-011-9469-3 Weng, 2012, Investigations on two kinds of two-grid mixed finite element methods for the elliptic eigenvalue problem, Comput. Math. Appl., 64, 2635, 10.1016/j.camwa.2012.07.009 Douglas, 1982, Mixed finite element methods for second order elliptic problems, Math. Appl. Comput., 1, 91 Milner, 1985, Mixed finite element methods for quasilinear second-order elliptic problems, Math. Comput., 44, 303, 10.1090/S0025-5718-1985-0777266-1 Park, 1995, Mixed finite element methods for nonlinear second-order elliptic problems, SIAM J. Numer. Anal., 32, 865, 10.1137/0732040 Park, 1996, Mixed methods for nonlinear second-order elliptic problems in three variables, Numer. Methods for PDEs, 12, 41, 10.1002/(SICI)1098-2426(199601)12:1<41::AID-NUM2>3.0.CO;2-N Arnold, 1990, Mixed finite element methods for second-order elliptic problems, Comput. Method. Appl. Mech. Eng., 82, 281, 10.1016/0045-7825(90)90168-L Douglas, 1989, An absolutely stabilized finite element method for the Stokes problem, Math. Comput., 52, 495, 10.1090/S0025-5718-1989-0958871-X Codina, 1997, A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation, Comput. Methods Appl. Mech. Eng., 143, 373, 10.1016/S0045-7825(96)01154-1 Bochev, 2006, Stabilization of low-order mixed finite elements for the Stokes equations, SIAM J. Numer. Anal., 44, 82, 10.1137/S0036142905444482 Dohrmann, 2004, A stabilized finite element method for the Stokes problem based on polynomial pressure projections, Int. J. Numer. Meth. Fluids, 46, 183, 10.1002/fld.752 Li, 2008, A stabilized finite element method based on two local Gauss integrations for the Stokes equations, J. Comput. Appl. Math., 214, 58, 10.1016/j.cam.2007.02.015 Becker, 2001, A finite element pressure gradient stabilization for the Stokes equations based on local projections, Calcolo, 38, 173, 10.1007/s10092-001-8180-4 Huang, 2012, Two-level stabilized method based on three corrections for the stationary NavierStokes equations, Appl. Numer. Math., 62, 988, 10.1016/j.apnum.2012.03.006 P. Huang, X. Feng, Y. He, Two-level defect-correction Oseen iterative stabilized finite element methods for the stationary NavierStokes equations, Appl. Math. Model., (2012) doi.org/10.1016/j.apm.2012.02.051. Li, 2007, A new stabilized finite element method for the transient Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 197, 22, 10.1016/j.cma.2007.06.029 Barrenechca, 2007, Pressure stabilization of finite element approximations of time-dependent incompressible flow problems, Comput. Methods Appl. Mech. Eng., 197, 219, 10.1016/j.cma.2007.07.027 L. Zhang, Z. Chen, A stabilized mixed finite element method for single-phase compressible flow, J. Appl. Math. Volume 2011 (2011), Article ID 129724, 16 pages, doi:10.1155/2011/129724. S. Zhai, X. Feng, Z. Weng, Numerical methods of new mixed finite element scheme for single-phase compressible flow, Int. J. Comput. Methods 10(1) (2013) 1350055 (18 pages). DOI: 10.1142/S0219876213500552. Brezzi, 1991 Ciarlet, 1978 Feng, 2011, Locally stabilized P1-nonconforming quadrilateral and hexahedral finite element method for the Stokes equations, J. Comput. Appl. Math., 236, 714, 10.1016/j.cam.2011.06.009 Girault, 1987 Becker, 2008, A simple pressure stabilization method for the Stokes equation, Commun. Numer. Meth. Eng., 24, 1421, 10.1002/cnm.1041 FreeFem++, version 2.19.1, http://www.freefem.org/. Weng, 2013, Analysis of two-grid method for semi-linear elliptic equations by new mixed finite element scheme, Appl. Math. Comput., 219, 4826