A two-grid stabilized mixed finite element method for semilinear elliptic equations
Tài liệu tham khảo
Xu, 1994, A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput., 15, 231, 10.1137/0915016
Xu, 1996, Two-grid finite element discretization techniques for linear and nonlinear PDE, SIAM J. Numer. Anal., 33, 1759, 10.1137/S0036142992232949
Wu, 1999, A two-grid method for mixed finite-element solutions of reaction-diffusion equations, Numer. Meth. PDEs, 15, 589, 10.1002/(SICI)1098-2426(199909)15:5<589::AID-NUM6>3.0.CO;2-W
Dawson, 1994, Two-grid method for mixed finite element approximations of non-linear parabolic equations, Contemp. Math., 180, 91
Chen, 2003, A two-grid method for expanded mixed finite-element solution of semilinear reaction-diffusion equations, Int. J. Numer. Meth. Eng., 57, 139, 10.1002/nme.668
Chen, 2009, Analysis of two-grid methods for nonlinear parabolic equations by expanded mixed finite element methods, Adv. Appl. Math. Mech., 1, 1, 10.4208/aamm.09-m09S09
Chen, 2007, Analysis of two-grid methods for reaction diffusion equations by expanded mixed finite element methods, Int. J. Numer. Meth. Eng., 69, 408, 10.1002/nme.1775
Chen, 2011, Two-grid method for nonlinear reaction-diffusion equations by mixed fnite element methods, J. Sci. Comput., 49, 383, 10.1007/s10915-011-9469-3
Weng, 2012, Investigations on two kinds of two-grid mixed finite element methods for the elliptic eigenvalue problem, Comput. Math. Appl., 64, 2635, 10.1016/j.camwa.2012.07.009
Douglas, 1982, Mixed finite element methods for second order elliptic problems, Math. Appl. Comput., 1, 91
Milner, 1985, Mixed finite element methods for quasilinear second-order elliptic problems, Math. Comput., 44, 303, 10.1090/S0025-5718-1985-0777266-1
Park, 1995, Mixed finite element methods for nonlinear second-order elliptic problems, SIAM J. Numer. Anal., 32, 865, 10.1137/0732040
Park, 1996, Mixed methods for nonlinear second-order elliptic problems in three variables, Numer. Methods for PDEs, 12, 41, 10.1002/(SICI)1098-2426(199601)12:1<41::AID-NUM2>3.0.CO;2-N
Arnold, 1990, Mixed finite element methods for second-order elliptic problems, Comput. Method. Appl. Mech. Eng., 82, 281, 10.1016/0045-7825(90)90168-L
Douglas, 1989, An absolutely stabilized finite element method for the Stokes problem, Math. Comput., 52, 495, 10.1090/S0025-5718-1989-0958871-X
Codina, 1997, A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation, Comput. Methods Appl. Mech. Eng., 143, 373, 10.1016/S0045-7825(96)01154-1
Bochev, 2006, Stabilization of low-order mixed finite elements for the Stokes equations, SIAM J. Numer. Anal., 44, 82, 10.1137/S0036142905444482
Dohrmann, 2004, A stabilized finite element method for the Stokes problem based on polynomial pressure projections, Int. J. Numer. Meth. Fluids, 46, 183, 10.1002/fld.752
Li, 2008, A stabilized finite element method based on two local Gauss integrations for the Stokes equations, J. Comput. Appl. Math., 214, 58, 10.1016/j.cam.2007.02.015
Becker, 2001, A finite element pressure gradient stabilization for the Stokes equations based on local projections, Calcolo, 38, 173, 10.1007/s10092-001-8180-4
Huang, 2012, Two-level stabilized method based on three corrections for the stationary NavierStokes equations, Appl. Numer. Math., 62, 988, 10.1016/j.apnum.2012.03.006
P. Huang, X. Feng, Y. He, Two-level defect-correction Oseen iterative stabilized finite element methods for the stationary NavierStokes equations, Appl. Math. Model., (2012) doi.org/10.1016/j.apm.2012.02.051.
Li, 2007, A new stabilized finite element method for the transient Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 197, 22, 10.1016/j.cma.2007.06.029
Barrenechca, 2007, Pressure stabilization of finite element approximations of time-dependent incompressible flow problems, Comput. Methods Appl. Mech. Eng., 197, 219, 10.1016/j.cma.2007.07.027
L. Zhang, Z. Chen, A stabilized mixed finite element method for single-phase compressible flow, J. Appl. Math. Volume 2011 (2011), Article ID 129724, 16 pages, doi:10.1155/2011/129724.
S. Zhai, X. Feng, Z. Weng, Numerical methods of new mixed finite element scheme for single-phase compressible flow, Int. J. Comput. Methods 10(1) (2013) 1350055 (18 pages). DOI: 10.1142/S0219876213500552.
Brezzi, 1991
Ciarlet, 1978
Feng, 2011, Locally stabilized P1-nonconforming quadrilateral and hexahedral finite element method for the Stokes equations, J. Comput. Appl. Math., 236, 714, 10.1016/j.cam.2011.06.009
Girault, 1987
Becker, 2008, A simple pressure stabilization method for the Stokes equation, Commun. Numer. Meth. Eng., 24, 1421, 10.1002/cnm.1041
FreeFem++, version 2.19.1, http://www.freefem.org/.
Weng, 2013, Analysis of two-grid method for semi-linear elliptic equations by new mixed finite element scheme, Appl. Math. Comput., 219, 4826