A tutorial on task-parameterized movement learning and retrieval
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abbeel P, Ng AY (2004) Apprenticeship learning via inverse reinforcement learning. In: Proceedings of international conference on machine learning (ICML)
Akgun B, Thomaz A (2015) Simultaneously learning actions and goals from demonstration. Autono Robots 1–17. doi: 10.1007/s10514-015-9448-x
Alissandrakis A, Nehaniv CL, Dautenhahn K (2006) Action, state and effect metrics for robot imitation. In: Proceedings of IEEE international symposium on robot and human interactive communication (Ro-Man), pp 232–237. Hatfield, UK
Alizadeh T, Calinon S, Caldwell DG (2014) Learning from demonstrations with partially observable task parameters. In: Proceedings of IEEE international conference on robotics and automation (ICRA), pp 3309–3314. Hong Kong, China
Astrom KJ, Murray RM (2008) Feedback systems: an introduction for scientists and engineers. Princeton University Press, Princeton
Baek J, McLachlan GJ, Flack LK (2010) Mixtures of factor analyzers with common factor loadings: applications to the clustering and visualization of high-dimensional data. IEEE Trans Pattern Anal Mach Intell 32(7):1298–1309
Basser PJ, Pajevic S (2003) A normal distribution for tensor-valued random variables: applications to diffusion tensor MRI. IEEE Trans Med Imaging 22(7):785–794
Borrelli F, Bemporad A, Morari M (2015) Predictive control for linear and hybrid systems. Cambridge University Press, Cambridge In preparation
Bouveyron C, Brunet C (2014) Model-based clustering of high-dimensional data: a review. Comput Stat Data Anal 71:52–78
Bouveyron C, Girard S, Schmid C (2007) High-dimensional data clustering. Comput Stat Data Anal 52(1):502–519
Brand M, Hertzmann A (2000) Style machines. In: Proceedings of ACM international conference on computer graphics and interactive techniques (SIGGRAPH), pp 183–192. New Orleans, Louisiana, USA
Calinon S, Alizadeh T, Caldwell DG (2013) On improving the extrapolation capability of task-parameterized movement models. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 610–616. Tokyo, Japan
Calinon S, Billard AG (2009) Statistical learning by imitation of competing constraints in joint space and task space. Adv Robot 23(15):2059–2076
Calinon S, Bruno D, Caldwell DG (2014) A task-parameterized probabilistic model with minimal intervention control. In: Proceedings of IEEE international conference on robotics and automation (ICRA), pp 3339–3344. Hong Kong, China
Calinon S, D’halluin F, Sauser EL, Caldwell DG, Billard AG (2010) Learning and reproduction of gestures by imitation: an approach based on hidden Markov model and Gaussian mixture regression. IEEE Robot Autom Mag 17(2):44–54
Calinon S, Guenter F, Billard AG (2007) On learning, representing and generalizing a task in a humanoid robot. IEEE Trans Syst Man Cybern B 37(2):286–298
Calinon S, Kormushev P, Caldwell DG (2013) Compliant skills acquisition and multi-optima policy search with EM-based reinforcement learning. Robot Auton Sys 61(4):369–379
Calinon S, Li Z, Alizadeh T, Tsagarakis NG, Caldwell DG (2012) Statistical dynamical systems for skills acquisition in humanoids. In: Proceedings of IEEE international conference on humanoid robots (humanoids), pp 323–329. Osaka, Japan
Campbell CL, Peters RA, Bodenheimer RE, Bluethmann WJ, Huber E, Ambrose RO (2006) Superpositioning of behaviors learned through teleoperation. IEEE Trans Robot 22(1): 79–91
Chatzis SP, Korkinof D, Demiris Y (2012) A nonparametric Bayesian approach toward robot learning by demonstration. Robot Auton Syst 60(6):789–802
Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39(1):1–38
Doerr A, Ratliff N, Bohg J, Toussaint M, Schaal S (2015) Direct loss minimization inverse optimal control. In: Proceedings of robotics: science and systems (R:SS), pp 1–9. Rome, Italy
Dong S, Williams B (2012) Learning and recognition of hybrid manipulation motions in variable environments using probabilistic flow tubes. Int J Soc Robot 4(4):357–368
Field M, Stirling D, Pan Z, Naghdy F (2015) Learning trajectories for robot programing by demonstration using a coordinated mixture of factor analyzers. IEEE Trans Cybern (in press)
Figueiredo MAT, Jain AK (2002) Unsupervised learning of finite mixture models. IEEE Trans Pattern Anal Mach Intell 24(3):381–396
Flash T, Hochner B (2005) Motor primitives in vertebrates and invertebrates. Curr Opin Neurobiol 15(6):660–666
Forte D, Gams A, Morimoto J, Ude A (2012) On-line motion synthesis and adaptation using a trajectory database. Robot Auton Syst 60(10):1327–1339
Furui S (1986) Speaker-independent isolated word recognition using dynamic features of speech spectrum. IEEE Trans Acoust Speech Signal Process 34(1):52–59
Gales MJF (1999) Semi-tied covariance matrices for hidden Markov models. IEEE Trans Speech Audio Process 7(3):272–281
Ghahramani Z, Hinton GE (1997) The EM algorithm for mixtures of factor analyzers. Tech. rep., University of Toronto
Ghahramani Z, Jordan MI (1994) Supervised learning from incomplete data via an EM approach. In: Cowan JD, Tesauro G, Alspector J (eds) Advances in neural information processing systems (NIPS), vol 6. Morgan Kaufmann, San Francisco, pp 120–127
Greggio N, Bernardino A, Dario P, Santos-Victor J (2014) Efficient greedy estimation of mixture models through a binary tree search. Robot Auton Syst 62(10):1440–1452
Grimes DB, Chalodhorn R, Rao RPN (2006) Dynamic imitation in a humanoid robot through nonparametric probabilistic inference. In: Proceedings of robotics: science and systems (R:SS), pp 1–8
Gross R, Shi J (2001) The CMU motion of body (MoBo) database. Tech. Rep. CMU-RI-TR-01-18, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
Hak S, Mansard N, Stasse O, Laumond JP (2012) Reverse control for humanoid robot task recognition. IEEE Trans Syst Man Cybern B Cybern 42(6):1524–1537
Hersch M, Guenter F, Calinon S, Billard AG (2006) Learning dynamical system modulation for constrained reaching tasks. In: Proceedings of IEEE international conference on humanoid eobots (humanoids), pp 444–449. Genova, Italy
Hersch M, Guenter F, Calinon S, Billard AG (2008) Dynamical system modulation for robot learning via kinesthetic demonstrations. IEEE Trans Robot 24(6):1463–1467
Hsu D, Kakade SM (2013) Learning mixtures of spherical Gaussians: moment methods and spectral decompositions. In: Conference on innovations in theoretical computer science, pp 11–20
Ijspeert A, Nakanishi J, Pastor P, Hoffmann H, Schaal S (2013) Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput 25(2):328–373
Inamura T, Toshima I, Tanie H, Nakamura Y (2004) Embodied symbol emergence based on mimesis theory. Int J Robot Res 23(4–5):363–377
Jetchev N, Toussaint M (2014) Discovering relevant task spaces using inverse feedback control. Auton Robot 37(2):169–189
Kelso JAS (2009) Synergies: atoms of brain and behavior. In: Sternad D (ed) A multidisciplinary approach to motor control. Advances in Experimental Medicine and Biology, vol 629. Springer, Heidelberg, pp 83–91
Khansari-Zadeh SM, Billard A (2011) Learning stable non-linear dynamical systems with Gaussian mixture models. IEEE Trans Robot 27(5):943–957
Kober J, Wilhelm A, Oztop E, Peters J (2012) Reinforcement learning to adjust parametrized motor primitives to new situations. Auton Robot 33(4):361–379
Krishnan S, Garg A, Patil S, Lea C, Hager G, Abbeel P, Goldberg K (2015) Unsupervised surgical task segmentation with milestone learning. In: Proceedings of international symposium on robotics research (ISRR)
Kronander K, Khansari-Zadeh MSM, Billard A (2011) Learning to control planar hitting motions in a minigolf-like task. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 710–717
Krueger V, Herzog DL, Baby S, Ude A, Kragic D (2010) Learning actions from observations: primitive-based modeling and grammar. IEEE Robot Autom Mag 17(2):30–43
Kulis B, Jordan MI (2012) Revisiting k-means: new algorithms via Bayesian nonparametrics. In: Proceedings of international conference on machine learning (ICML)
Latash ML, Scholz JP, Schoener G (2002) Motor control strategies revealed in the structure of motor variability. Exerc Sport Sci Rev 30(1):26–31
Lee D, Ott C (2011) Incremental kinesthetic teaching of motion primitives using the motion refinement tube. Auton Robots 31(2):115–131
Lee SH, Suh IH, Calinon S, Johansson R (2015) Autonomous framework for segmenting robot trajectories of manipulation task. Auton Robots 38(2):107–141
Levine S, Wagener N, Abbeel P (2015) Learning contact-rich manipulation skills with guided policy search. In: Proceedings of IEEE international conference on robotics and automation (ICRA), pp 156–163
Lober R, Padois V, Sigaud O (2014) Multiple task optimization using dynamical movement primitives for whole-body reactive control. In: Proceedings of IEEE international conference on humanoid robots (humanoids). Madrid, Spain
MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of of the 5th Berkeley symposium on mathematical statistics and probability, pp 281–297
Matsubara T, Hyon SH, Morimoto J (2011) Learning parametric dynamic movement primitives from multiple demonstrations. Neural Netw 24(5):493–500
McLachlan GJ, Peel D, Bean RW (2003) Modelling high-dimensional data by mixtures of factor analyzers. Comput Stat Data Anal 41(3–4):379–388
Medina JR, Lee D, Hirche S (2012) Risk-sensitive optimal feedback control for haptic assistance. In: Proceedings of IEEE international conference on robotics and automation (ICRA), pp 1025–1031
Miller S, Fritz M, Darrell T, Abbeel P (2011) Parametrized shape models for clothing. In: Proceedings of IEEE international conference on robotics and automation (ICRA), pp 4861–4868
Moldovan TM, Levine S, Jordan MI, Abbeel P (2015) Optimism-driven exploration for nonlinear systems. In: Proceedings of IEEE international conference on robotics and automation (ICRA), pp 3239–3246. Seattle, WA, USA
Mühlig M, Gienger M, Steil J (2012) Interactive imitation learning of object movement skills. Auton Robots 32(2):97–114
Mussa-Ivaldi FA (1992) From basis functions to basis fields: vector field approximation from sparse data. Biol Cybern 67(6):479–489
Neal RM, Hinton GE (1999) A view of the EM algorithm that justifies incremental, sparse, and other variants. In: Jordan MI (ed) Learning in graphical models. MIT Press, Cambridge, pp 355–368
Ng A, Jordan M, Weiss Y (2001) On spectral clustering: analysis and an algorithm. In: Dietterich T, Becker S, Ghahramani Z (eds) Advances in neural information processing systems (NIPS). MIT Press, Cambridge, pp 849–856
Nguyen-Tuong D, Peters J (2008) Local Gaussian process regression for real-time model-based robot control. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 380–385
Niekum S, Osentoski S, Konidaris G, Chitta S, Marthi B, Barto AG (2015) Learning grounded finite-state representations from unstructured demonstrations. Int J Robot Res 34(2):131–157
Paraschos A, Daniel C, Peters J, Neumann G (2013) Probabilistic movement primitives. In: Burges CJC, Bottou L, Welling M, Ghahramani Z, Weinberger KQ (eds) Advances in neural information processing systems (NIPS). Curran Associates, Red Hook, pp 2616–2624
Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77(2):257–285
Rasmussen CE (2000) The infinite Gaussian mixture model. In: Solla SA, Leen TK, Mueller K-R (eds) Advances in neural information processing systems (NIPS). MIT Press, Cambridge, pp 554–560
Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. MIT Press, Cambridge
Renard N, Bourennane S, Blanc-Talon J (2008) Denoising and dimensionality reduction using multilinear tools for hyperspectral images. IEEE Geosci Remote Sens Lett 5(2):138–142
Rueckert E, Mundo J, Paraschos A, Peters J, Neumann G (2015) Extracting low-dimensional control variables for movement primitives. In: Proceedings of IEEE international conference on robotics and automation (ICRA), pp 1511–1518. Seattle, WA, USA
Saveriano M, An S, Lee D (2015) Incremental kinesthetic teaching of end-effector and null-space motion primitives. In: Proceedings of IEEE international conference on robotics and automation (ICRA), pp 3570–3575
Schaal S, Atkeson CG (1998) Constructive incremental learning from only local information. Neural Comput 10(8):2047–2084
Schaal S, Mohajerian P, Ijspeert AJ (2007) Dynamics systems vs. optimal control: a unifying view. Prog Brain Res 165:425–445
Scholz JP, Schoener G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126(3):289–306
Shi T, Belkin M, Yu B (2009) Data spectroscopy: eigenspace of convolution operators and clustering. Ann Stat 37(6B):3960–3984
Signoretto M, Van de Plas R, De Moor B, Suykens JAK (2011) Tensor versus matrix completion: a comparison with application to spectral data. IEEE Signal Process Lett 18(7):403–406
Sternad D, Park SW, Mueller H, Hogan N (2010) Coordinate dependence of variability analysis. PLoS Comput Biol 6(4):1–16
Strang G (1986) Introduction to applied mathematics. Wellesley-Cambridge Press, Wellesley
Stulp F, Sigaud O (2015) Many regression algorithms, one unified model—a review. Neural Netw 69:60–79
Sugiura K, Iwahashi N, Kashioka H, Nakamura S (2011) Learning, generation, and recognition of motions by reference-point-dependent probabilistic models. Adv Robot 25(6–7):825–848
Sung HG (2004) Gaussian mixture regression and classification. PhD thesis, Rice University, Houston, Texas
Tang J, Singh A, Goehausen N, Abbeel P (2010) Parameterized maneuver learning for autonomous helicopter flight. In: Proceedings of IEEE international conference on robotics and automation (ICRA), pp 1142–1148
Tang Y, Salakhutdinov R, Hinton G (2012) Deep mixtures of factor analysers. In: Proceedings of international conference on machine learning (ICML). Edinburgh, Scotland
Tipping ME, Bishop CM (1999) Mixtures of probabilistic principal component analyzers. Neural Comput 11(2):443–482
Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5:1226–1235
Tokuda K, Masuko T, Yamada T, Kobayashi T, Imai S (1995) An algorithm for speech parameter generation from continuous mixture HMMs with dynamic features. In: Proceedings of European conference on speech communication and technology (EUROSPEECH), pp 757–760
Towell C, Howard M, Vijayakumar S (2010) Learning nullspace policies. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 241–248
Ude A, Gams A, Asfour T, Morimoto J (2010) Task-specific generalization of discrete and periodic dynamic movement primitives. IEEE Trans Robot 26(5):800–815
Vasilescu MAO, Terzopoulos D (2002) Multilinear analysis of image ensembles: TensorFaces. In: Computer vision (ECCV), Lecture Notes in Computer Science, vol 2350. Springer, Berlin, pp 447–460
Verbeek JJ, Vlassis N, Kroese B (2003) Efficient greedy learning of Gaussian mixture models. Neural Comput 15(2):469–485
Vijayakumar S, D’souza A, Schaal S (2005) Incremental online learning in high dimensions. Neural Comput 17(12):2602–2634
Wang Y, Zhu J (2015) DP-space: Bayesian nonparametric subspace clustering with small-variance asymptotics. In: Proceedings of international conference on machine learning (ICML), pp 1–9. Lille, France
Wilson AD, Bobick AF (1999) Parametric hidden Markov models for gesture recognition. IEEE Trans Pattern Anal Mach Intell 21(9):884–900
Wolpert DM, Diedrichsen J, Flanagan JR (2011) Principles of sensorimotor learning. Nat Rev 12:739–751
Wrede S, Emmerich C, Ricarda R, Nordmann A, Swadzba A, Steil JJ (2013) A user study on kinesthetic teaching of redundant robots in task and configuration space. J Hum Robot Interact 2:56–81
Yamazaki T, Niwase N, Yamagishi J, Kobayashi T (2005) Human walking motion synthesis based on multiple regression hidden semi-Markov model. In: Proceedings of international conference on cyberworlds, pp 445–452
Zen H, Tokuda K, Kitamura T (2007) Reformulating the HMM as a trajectory model by imposing explicit relationships between static and dynamic feature vector sequences. Comput Speech Lang 21(1):153–173