A tutorial on spectral clustering

Statistics and Computing - Tập 17 Số 4 - Trang 395-416 - 2007
Ulrike von Luxburg1
1Max-Planck Institute for Biological Cybernetics, Tübingen, Germany 72076#TAB#

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aldous, D., Fill, J.: Reversible Markov chains and random walks on graphs (in preparation). Online version available at http://www.stat.berkeley.edu/users/aldous/RWG/book.html

Bach, F., Jordan, M.: Learning spectral clustering. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems 16 (NIPS), pp. 305–312. MIT Press, Cambridge (2004)

Bapat, R., Gutman, I., Xiao, W.: A simple method for computing resistance distance. Z. Naturforsch. 58, 494–498 (2003)

Barnard, S., Pothen, A., Simon, H.: A spectral algorithm for envelope reduction of sparse matrices. Numer. Linear Algebra Appl. 2(4), 317–334 (1995)

Belkin, M.: Problems of learning on manifolds. Ph.D. Thesis, University of Chicago (2003)

Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

Belkin, M., Niyogi, P.: Towards a theoretical foundation for Laplacian-based manifold methods. In: Auer, P., Meir, R. (eds.) Proceedings of the 18th Annual Conference on Learning Theory (COLT), pp. 486–500. Springer, New York (2005)

Ben-David, S., von Luxburg, U., Pal, D.: A sober look on clustering stability. In: Lugosi, G., Simon, H. (eds.) Proceedings of the 19th Annual Conference on Learning Theory (COLT), pp. 5–19. Springer, Berlin (2006)

Bengio, Y., Delalleau, O., Roux, N., Paiement, J., Vincent, P., Ouimet, M.: Learning eigenfunctions links spectral embedding and kernel PCA. Neural Comput. 16, 2197–2219 (2004)

Ben-Hur, A., Elisseeff, A., Guyon, I.: A stability based method for discovering structure in clustered data. In: Pacific Symposium on Biocomputing, pp. 6–17 (2002)

Bhatia, R.: Matrix Analysis. Springer, New York (1997)

Bie, T.D., Cristianini, N.: Fast SDP relaxations of graph cut clustering, transduction, and other combinatorial problems. J. Mach. Learn. Res. 7, 1409–1436 (2006)

Bolla, M.: Relations between spectral and classification properties of multigraphs. Technical Report No. DIMACS-91-27, Center for Discrete Mathematics and Theoretical Computer Science (1991)

Brémaud, P.: Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. Springer, New York (1999)

Brito, M., Chavez, E., Quiroz, A., Yukich, J.: Connectivity of the mutual k-nearest-neighbor graph in clustering and outlier detection. Stat. Probab. Lett. 35, 33–42 (1997)

Bui, T.N., Jones, C.: Finding good approximate vertex and edge partitions is NP-hard. Inf. Process. Lett. 42(3), 153–159 (1992)

Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-Supervised Learning. MIT Press, Cambridge (2006)

Chung, F.: Spectral Graph Theory. CBMS Regional Conference Series, vol. 92. Conference Board of the Mathematical Sciences, Washington (1997)

Dhillon, I.: Co-clustering documents and words using bipartite spectral graph partitioning. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 269–274. ACM Press, New York (2001)

Dhillon, I., Guan, Y., Kulis, B.: A unified view of kernel k-means, spectral clustering, and graph partitioning. Technical Report No. UTCS TR-04-25, University of Texas at Austin (2005)

Ding, C.: A tutorial on spectral clustering. Talk presented at ICML (2004). Slides available at http://crd.lbl.gov/~cding/Spectral/

Ding, C., He, X., Zha, H., Gu, M., Simon, H.: A min-max cut algorithm for graph partitioning and data clustering. In: Proceedings of the first IEEE International Conference on Data Mining (ICDM), pp. 107–114. IEEE Computer Society, Washington (2001)

Donath, W.E., Hoffman, A.J.: Lower bounds for the partitioning of graphs. IBM J. Res. Develop. 17, 420–425 (1973)

Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Math. J. 23, 298–305 (1973)

Fouss, F., Pirotte, A., Renders, J.-M., Saerens, M.: Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans. Knowl. Data Eng. 19, 355–369 (2007)

Fraley, C., Raftery, A.E.: Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc. 97, 611–631 (2002)

Giné, E., Koltchinskii, V.: Empirical graph Laplacian approximation of Laplace-Beltrami operators: large sample results. In: Proceedings of the 4th International Conference on High Dimensional Probability, pp. 238–259 (2005)

Golub, G., Van Loan, C.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)

Guattery, S., Miller, G.: On the quality of spectral separators. SIAM J. Matrix Anal. Appl. 19(3), 701–719 (1998)

Gutman, I., Xiao, W.: Generalized inverse of the Laplacian matrix and some applications. Bull. Acad. Serb. Sci. Arts (Cl. Math. Natur.) 129, 15–23 (2004)

Hagen, L., Kahng, A.: New spectral methods for ratio cut partitioning and clustering. IEEE Trans. Comput.-Aided Des. 11(9), 1074–1085 (1992)

Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2001)

Hein, M.: Uniform convergence of adaptive graph-based regularization. In: Proceedings of the 19th Annual Conference on Learning Theory (COLT), pp. 50–64. Springer, New York (2006)

Hein, M., Audibert, J.-Y., von Luxburg, U.: From graphs to manifolds—weak and strong pointwise consistency of graph Laplacians. In: Auer, P., Meir, R. (eds.) Proceedings of the 18th Annual Conference on Learning Theory (COLT), pp. 470–485. Springer, New York (2005)

Hein, M., Audibert, J.-Y., von Luxburg, U.: Graph Laplacians and their convergence on random neighborhood graphs. J. Mach. Learn. Res. 8, 1325–1370 (2007)

Hendrickson, B., Leland, R.: An improved spectral graph partitioning algorithm for mapping parallel computations. SIAM J. Sci. Comput. 16, 452–469 (1995)

Joachims, T.: Transductive learning via spectral graph partitioning. In: Fawcett, T., Mishra, N. (eds.) Proceedings of the 20th International Conference on Machine Learning (ICML), pp. 290–297. AAAI Press (2003)

Kannan, R., Vempala, S., Vetta, A.: On clusterings: good, bad and spectral. J. ACM 51(3), 497–515 (2004)

Kempe, D., McSherry, F.: A decentralized algorithm for spectral analysis. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC), pp. 561–568. ACM Press, New York (2004)

Klein, D., Randic, M.: Resistance distance. J. Math. Chem. 12, 81–95 (1993)

Koren, Y.: Drawing graphs by eigenvectors: theory and practice. Comput. Math. Appl. 49, 1867–1888 (2005)

Lafon, S.: Diffusion maps and geometric harmonics. Ph.D. Thesis, Yale University (2004)

Lang, K.: Fixing two weaknesses of the spectral method. In: Weiss, Y., Schölkopf, B., Platt, J. (eds.) Advances in Neural Information Processing Systems 18, pp. 715–722. MIT Press, Cambridge (2006)

Lange, T., Roth, V., Braun, M., Buhmann, J.: Stability-based validation of clustering solutions. Neural Comput. 16(6), 1299–1323 (2004)

Lovász, L.: Random walks on graphs: a survey. In: Combinatorics, Paul Erdös is Eighty, pp. 353–397. János Bolyai Math. Soc., Budapest (1993)

Lütkepohl, H.: Handbook of Matrices. Wiley, Chichester (1997)

Meila, M., Shi, J.: A random walks view of spectral segmentation. In: 8th International Workshop on Artificial Intelligence and Statistics (AISTATS) (2001)

Mohar, B.: The Laplacian spectrum of graphs. In: Graph Theory, Combinatorics, and Applications. Kalamazoo, MI, 1988, vol. 2, pp. 871–898. Wiley, New York (1991)

Mohar, B.: Some applications of Laplace eigenvalues of graphs. In: Hahn, G., Sabidussi, G. (eds.) Graph Symmetry: Algebraic Methods and Applications. NATO ASI Ser. C, vol. 497, pp. 225–275. Kluwer, Dordrecht (1997)

Nadler, B., Lafon, S., Coifman, R., Kevrekidis, I.: Diffusion maps, spectral clustering and eigenfunctions of Fokker-Planck operators. In: Weiss, Y., Schölkopf, B., Platt, J. (eds.) Advances in Neural Information Processing Systems 18, pp. 955–962. MIT Press, Cambridge (2006)

Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Dietterich, T., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14, pp. 849–856. MIT Press, Cambridge (2002)

Norris, J.: Markov Chains. Cambridge University Press, Cambridge (1997)

Penrose, M.: A strong law for the longest edge of the minimal spanning tree. Ann. Probab. 27(1), 246–260 (1999)

Pothen, A., Simon, H.D., Liou, K.P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11, 430–452 (1990)

Saerens, M., Fouss, F., Yen, L., Dupont, P.: The principal components analysis of a graph, and its relationships to spectral clustering. In: Proceedings of the 15th European Conference on Machine Learning (ECML), pp. 371–383. Springer, Berlin (2004)

Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

Simon, H.: Partitioning of unstructured problems for parallel processing. Comput. Syst. Eng. 2, 135–148 (1991)

Spielman, D., Teng, S.: Spectral partitioning works: planar graphs and finite element meshes. In: 37th Annual Symposium on Foundations of Computer Science (Burlington, VT, 1996), pp. 96–105. CA: IEEE Comput. Soc. Press, Los Alamitos (1996)

Stewart, G., Sun, J.: Matrix Perturbation Theory. Academic, New York (1990)

Still, S., Bialek, W.: How many clusters? An information-theoretic perspective. Neural Comput. 16(12), 2483–2506 (2004)

Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM 44(4), 585–591 (1997)

Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a dataset via the gap statistic. J. Roy. Stat. Soc. B 63(2), 411–423 (2001)

Van Driessche, R., Roose, D.: An improved spectral bisection algorithm and its application to dynamic load balancing. Parallel Comput. 21(1), 29–48 (1995)

von Luxburg, U., Belkin, M., Bousquet, O.: Consistency of spectral clustering. Ann. Stat. (to appear). See also Technical Report No. 134, Max Planck Institute for Biological Cybernetics (2004)

von Luxburg, U., Bousquet, O., Belkin, M.: On the convergence of spectral clustering on random samples: the normalized case. In: Shawe-Taylor, J., Singer, Y. (eds.) Proceedings of the 17th Annual Conference on Learning Theory (COLT), pp. 457–471. Springer, New York (2004)

von Luxburg, U., Bousquet, O., Belkin, M.: Limits of spectral clustering. In: Saul, L., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems (NIPS) 17, pp. 857–864. MIT Press, Cambridge (2005)

Wagner, D., Wagner, F.: Between min cut and graph bisection. In: Proceedings of the 18th International Symposium on Mathematical Foundations of Computer Science (MFCS), pp. 744–750. Springer, London (1993)