A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions

Journal of Mathematical Psychology - Tập 85 - Trang 1-16 - 2018
Eric Schulz1, Maarten Speekenbrink2, Andreas Krause3
1Department of Psychology, Harvard University, United States
2Department of Experimental Psychology, University College London, United Kingdom
3Department of Computer Science, Swiss Federal Institute of Technology, Zürich, Switzerland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Akaike, 1974, A new look at the statistical model identification, IEEE Transactions on Automatic Control, 19, 716, 10.1109/TAC.1974.1100705

Berkenkamp, F., Krause, A., & Schoellig, A. P. (2016). Bayesian optimization with safety constraints: safe and automatic parameter tuning in robotics, arXiv preprint arXiv:1602.04450.

Borji, 2013, Bayesian optimization explains human active search, 55

Cavagnaro, D. R., Aranovich, G. J., McClure, S. M., Pitt, M. A., & Myung, J. I. (2014). On the functional form of temporal discounting: An optimized adaptive test.

Chapelle, 2011, An empirical evaluation of Thompson sampling, 2249

Cox, 2012, Gaussian process regression for trajectory analysis

de Freitas, N., Smola, A., & Zoghi, M. (2012). Regret Bounds for Deterministic Gaussian Process Bandits, arXiv preprint arXiv:1203.2177.

Desautels, 2015, An active learning algorithm for control of epidural electrostimulation, IEEE Transactions on Biomedical Engineering, 62, 2443, 10.1109/TBME.2015.2431911

Durrleman, 1989, Flexible regression models with cubic splines, Statistics in Medicine, 8, 551, 10.1002/sim.4780080504

Duvenaud, D., Lloyd, J. R., Grosse, R., Tenenbaum, J. B., & Ghahramani, Z. (2013). Structure discovery in nonparametric regression through compositional kernel search, arXiv preprint arXiv:1302.4922.

Engbert, 2004, Microsaccades keep the eyes’ balance during fixation, Psychological Science, 15, 431, 10.1111/j.0956-7976.2004.00697.x

Flaxman, S., Gelman, A., Neill, D., Smola, A., Vehtari, A., & Wilson, A. G. (2015). Fast hierarchical Gaussian processes.

Freeman, 2010, MouseTracker: Software for studying real-time mental processing using a computer mouse-tracking method, Behavior Research Methods, 42, 226, 10.3758/BRM.42.1.226

Gershman, 2012, A tutorial on Bayesian nonparametric models, Journal of Mathematical Psychology, 56, 1, 10.1016/j.jmp.2011.08.004

Gershman, 2016

Gramacy, R. B. et al. (2007). tgp: an R package for Bayesian nonstationary, semiparametric nonlinear regression and design by treed Gaussian process models.

Gramacy, 2014, Local gaussian process approximation for large computer experiments, Journal of Computational and Graphical Statistics, 24, 561, 10.1080/10618600.2014.914442

Gramacy, 2008, Bayesian treed Gaussian process models with an application to computer modeling, Journal of the American Statistical Association, 103, 10.1198/016214508000000689

Hennig, 2015, Probabilistic numerics and uncertainty in computations, Proceedings of the Royal Society of London, Series A (Mathematical and Physical Sciences), 471, 20150142, 10.1098/rspa.2015.0142

Hennig, 2012, Entropy search for information-efficient global optimization, Journal of Machine Learning Research (JMLR), 13, 1809

Jäkel, 2007, A tutorial on kernel methods for categorization, Journal of Mathematical Psychology, 51, 343, 10.1016/j.jmp.2007.06.002

Kac, 1947, An explicit representation of a stationary Gaussian process, The Annals of Mathematical Statistics, 438, 10.1214/aoms/1177730391

Katehakis, 1987, The multi-armed bandit problem: Decomposition and computation, Mathematics of Operations Research, 12, 262, 10.1287/moor.12.2.262

Kieslich, 2017, Mousetrap: An integrated, open-source mouse-tracking package, Behavioral Research Methods, 10.3758/s13428-017-0900-z

Krause, 2010, Sfo: A toolbox for submodular function optimization, Journal of Machine Learning Research (JMLR), 11, 1141

Krause, 2012, Submodular function maximization, Tractability: Practical Approaches to Hard Problems, 3, 19

Krause, 2008, Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies, Journal of Machine Learning Research (JMLR), 9, 235

Lawrence, N., Seeger, M., & Herbrich, R. (2003). Fast sparse Gaussian process methods: The informative vector machine. In Proceedings of the 16th annual conference on neural information processing systems, no. EPFL-CONF-161319 (pp. 609–616).

Lee, 2004, A phase space spline smoother for fitting trajectories, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 34, 346, 10.1109/TSMCB.2003.817027

Lloyd, J. R., Duvenaud, D., Grosse, R., Tenenbaum, J. B., & Ghahramani, Z. (2014). Automatic construction and natural-language description of nonparametric regression models, arXiv preprint arXiv:1402.4304.

Lucas, 2015, A rational model of function learning, Psychonomic Bulletin & Review, 1

Matthews, 2017, GPflow: A Gaussian process library using TensorFlow, Journal of Machine Learning Research (JMLR), 18, 1

May, 2012, Optimistic Bayesian sampling in contextual-bandit problems, Journal of Machine Learning Research (JMLR), 13, 2069

Meder, 2012, Information search with situation-specific reward functions, Judgment and Decision Making, 7, 119, 10.1017/S1930297500002977

Močkus, 1975, On bayesian methods for seeking the extremum, 400

Myung, 2013, A tutorial on adaptive design optimization, Journal of Mathematical Psychology, 57, 53, 10.1016/j.jmp.2013.05.005

Myung, 2009, Optimal experimental design for model discrimination, Psychological Review, 116, 499, 10.1037/a0016104

Rahimi, 2007, Random features for large-scale kernel machines, 1177

Rasmussen, 2010, Gaussian processes for machine learning (GPML) toolbox, Journal of Machine Learning Research (JMLR), 11, 3011

Schulz, E., Huys, Q. J., Bach, D. R., Speekenbrink, M., & Krause, A. (2016). Better safe than sorry: Risky function exploitation through safe optimization, arXiv preprint arXiv:1602.01052.

Schulz, 2017, Putting bandits into context: How function learning supports decision making, Journal of Experimental Psychology. Learning, Memory, and Cognition

Schulz, 2016, Quantifying mismatch in Bayesian optimization

Schulz, 2016, Probing the compositionality of intuitive functions, Advances in Neural Information Processing Systems, 29

Schulz, 2015, Assessing the perceived predictability of functions

Sheffield ML group, (2012). GPy: A Gaussian process framework in python. http://github.com/SheffieldML/GPy.

Srinivas, N., Krause, A., Kakade, S. M., & Seeger, M. (2009). Gaussian process optimization in the bandit setting: No regret and experimental design, arXiv preprint arXiv:0912.3995.

Sui, Y., Gotovos, A., Burdick, J., & Krause, A. (2015). Safe exploration for optimization with Gaussian processes. In Proceedings of the 32nd international conference on machine learning (pp. 997–1005).

Thompson, 1933, On the likelihood that one unknown probability exceeds another in view of the evidence of two samples, Biometrika, 25, 285, 10.2307/2332286

Van Zandt, 2014, Designs for and analyses of response time experiments, The Oxford Handbook of Quantitative Methods: Foundations, 1, 260

Vanhatalo, 2013, GPstuff: Bayesian modeling with Gaussian processes, Journal of Machine Learning Research (JMLR), 14, 1175

Wagenmakers, 2004, Estimation and interpretation of 1/fα noise in human cognition, Psychonomic Bulletin & Review, 11, 579, 10.3758/BF03196615

Wetzels, 2010, Bayesian parameter estimation in the Expectancy Valence model of the Iowa gambling task, Journal of Mathematical Psychology, 54, 14, 10.1016/j.jmp.2008.12.001

Williams, 1998, Prediction with Gaussian processes: From linear regression to linear prediction and beyond, 599

Williams, 2006, Gaussian processes for machine learning, The MIT Press, 2, 4

Wilson, 2013, Gaussian process kernels for pattern discovery and extrapolation, 1067

Wilson, 2015, The human kernel, 2854

Wu, C. M., Schulz, E., Speekenbrink, M., Nelson, J. D., & Meder, B. (2017). Exploration and generalization in vast spaces, BioRxiv 171371.