A tumor-selective adenoviral vector platform induces transient antiphospholipid antibodies, without increased risk of thrombosis, in phase 1 clinical studies
Tóm tắt
Từ khóa
Tài liệu tham khảo
Machiels JP, Salazar R, Rottey S, Duran I, Dirix L, Geboes K et al (2019) A phase 1 dose escalation study of the oncolytic adenovirus enadenotucirev, administered intravenously to patients with epithelial solid tumors (EVOLVE). J Immunother Cancer 7(1):20
Moreno V, Barretina-Ginesta M-P, García-Donas J, Jayson GC, Roxburgh P, Vázquez RM et al (2021) Safety and efficacy of the tumor-selective adenovirus enadenotucirev with or without paclitaxel in platinum-resistant ovarian cancer: a phase 1 clinical trial. J Immunother Cancer 9(12):e003645
Garcia-Carbonero R, Salazar R, Duran I, Osman-Garcia I, Paz-Ares L, Bozada JM et al (2017) Phase 1 study of intravenous administration of the chimeric adenovirus enadenotucirev in patients undergoing primary tumor resection. J Immunother Cancer 5(1):71
Garcia D, Erkan D (2018) Diagnosis and management of the Antiphospholipid Syndrome. N Engl J Med 378(21):2010–2021
Miyakis S, Lockshin MD, Atsumi T, Branch DW, Brey RL, CERVERA R et al (2006) International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost 4(2):295–306
Devreese KM (2014) Antiphospholipid antibody testing and standardization. Int J Lab Hematol 36(3):352–363
Chayoua W, Kelchtermans H, Moore GW, Musiał J, Wahl D, de Laat B et al (2018) Identification of high thrombotic risk triple-positive antiphospholipid syndrome patients is dependent on anti-cardiolipin and anti-β2glycoprotein I antibody detection assays. J Thromb Haemost 16(10):2016–2023
Chayoua W, Kelchtermans H, Gris JC, Moore GW, Musiał J, Wahl D et al (2020) The (non-)sense of detecting anti-cardiolipin and anti-β2glycoprotein I IgM antibodies in the antiphospholipid syndrome. J Thromb Haemost 18(1):169–179
Vandevelde A, Chayoua W, de Laat B, Gris J-C, Moore GW, Musiał J et al (2022) Semiquantitative interpretation of anticardiolipin and antiβ2glycoprotein I antibodies measured with various analytical platforms: communication from the ISTH SSC Subcommittee on Lupus Anticoagulant/Antiphospholipid antibodies. J Thromb Haemost 20(2):508–524
Asherson RA, Cervera R (2003) Antiphospholipid antibodies and infections. Ann Rheum Dis 62(5):388–393
Abdel-Wahab N, Talathi S, Lopez-Olivo MA, Suarez-Almazor ME (2018) Risk of developing antiphospholipid antibodies following viral infection: a systematic review and meta-analysis. Lupus 27(4):572–583
Malaeb BS, Gardner TA, Margulis V, Yang L, Gillenwater JY, Chung LWK et al (2005) Elevated activated partial thromboplastin time during administration of first-generation adenoviral vectors for gene therapy for prostate cancer: identification of lupus anticoagulants. Urology 66(4):830–834
Crank MC, Wilson EM, Novik L, Enama ME, Hendel CS, Gu W et al (2016) Safety and Immunogenicity of a rAd35-EnvA prototype HIV-1 vaccine in combination with rAd5-EnvA in healthy adults (VRC 012). PLoS ONE 11(11):e0166393
Ledgerwood JE, Costner P, Desai N, Holman L, Enama ME, Yamshchikov G et al (2010) A replication defective recombinant Ad5 vaccine expressing Ebola virus GP is safe and immunogenic in healthy adults. Vaccine 29(2):304–313
Sheets RL, Stein J, Bailer RT, Koup RA, Andrews C, Nason M et al (2008) Biodistribution and toxicological safety of adenovirus type 5 and type 35 vectored vaccines against human immunodeficiency virus-1 (HIV-1), Ebola, or Marburg are similar despite differing adenovirus serotype vector, manufacturer’s construct, or gene inserts. J Immunotoxicol 5(3):315–335
Mulder FI, Horváth-Puhó E, van Es N, van Laarhoven HWM, Pedersen L, Moik F et al (2021) Venous thromboembolism in cancer patients: a population-based cohort study. Blood 137(14):1959–1969
Timp JF, Braekkan SK, Versteeg HH, Cannegieter SC (2013) Epidemiology of cancer-associated venous thrombosis. Blood 122(10):1712–1723
Fakih M, Wang D, Harb W, Rosen L, Mahadevan D, Berlin J et al (2019) A phase I multicenter study of enadenotucirev in combination with nivolumab in tumors of epithelial origin: an analysis of the metastatic colorectal cancer patients in the dose escalation phase. Ann Oncol 30(Suppl 5):V198–V252
Krige D, Fakih M, Rosen L, Wang D, Harb W, Babiker H et al (2021) 342 Combining enadenotucirev and nivolumab increased tumour immune cell infiltration/activation in patients with microsatellite-stable/instability-low metastatic colorectal cancer in a phase 1 study. J Immunother Cancer 9(Suppl 2):A368–A9
Naing A, Rosen L, Camidge RD, Khalil D, Davies J, Miles D et al (2021) 1011P FORTITUDE phase I study of NG-350A, a novel tumour-selective adenoviral vector expressing an anti-CD40 agonist antibody: Monotherapy dose escalation results. Ann Oncol 32:S853–S4
Lillie T, O’Hara M, Ottensmeier C, Parkes E, Rosen L, Krige D et al (2022) Abstract CT213: a multicenter phase 1a/b study of NG-350A, a tumor-selective anti-CD40-antibody expressing adenoviral vector, and pembrolizumab in patients with metastatic or advanced epithelial tumors (FORTIFY). Cancer Res 82(12Supplement):CT213–CT
Simon G, Subbiah V, Rosen L, Lenz H-J, Park H, Patel M et al (2022) 762 First-in-human phase 1a study of NG-641, a tumour-selective vector expressing a FAP-TAc bispecific antibody and immune enhancer module, in patients with metastatic/advanced epithelial tumours (STAR). J Immunother Cancer 10(Suppl 2):A793–A
Ottensmeier C, Evans M, King E, Karydis I, Lillie T, Krige D et al (2021) 437 A multicentre phase 1b study of NG-641, a novel transgene-armed and tumour-selective adenoviral vector, and pembrolizumab as neoadjuvant treatment for squamous cell carcinoma of the head and neck. J Immunother Cancer 9(Suppl 2):A467–A
Lillie T, Parkes E, Ottensmeier C, Krige D, Ravanfar B, Evilevitch V et al (2022) Abstract CT214: a multicenter phase 1a/b study of NG-641, a tumor-selective transgene-expressing adenoviral vector, and nivolumab in patients with metastatic or advanced epithelial tumors (NEBULA). Cancer Res 82(12Supplement):CT214–CT
Wiwanitkit V (2004) Activated partial Thromboplastin Time abnormality in patients with Cholangiocarcinoma. Clin Appl Thromb Hemost 10(1):69–71
Liu J, Li F, Shu K, Chen T, Wang X, Xie Y et al (2018) The analysis of false prolongation of the activated partial thromboplastin time (activator: silica): interference of C-reactive protein. J Clin Lab Anal 32(8):e22571
Ay C, Pabinger I, Cohen AT (2017) Cancer-associated venous thromboembolism: Burden, mechanisms, and management. Thromb Haemost 117(2):219–230
Abdel-Wahab N, Lopez-Olivo MA, Pinto-Patarroyo GP, Suarez-Almazor ME (2016) Systematic review of case reports of antiphospholipid syndrome following infection. Lupus 25(14):1520–1531
Shoenfeld Y, Blank M, Cervera R, Font J, Raschi E, Meroni P-L (2006) Infectious origin of the antiphospholipid syndrome. Ann Rheum Dis 65(1):2–6
Gharavi AE, Pierangeli SS, Harris EN (2001) Origin of antiphospholipid antibodies. Rheum Dis Clin North Am 27(3):551–563
de Laat B, Mertens K, de Groot PG (2008) Mechanisms of Disease: antiphospholipid antibodies—from clinical association to pathologic mechanism. Nat Clin Pract Rheumatol 4(4):192–199