A trust-region framework for constrained optimization using reduced order modeling

Springer Science and Business Media LLC - Tập 14 Số 1 - Trang 3-35 - 2013
Anshul Agarwal1, Lorenz T. Biegler1
1Carnegie Mellon University

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agarwal A, Biegler LT, Zitney SE (2009) Simulation and optimization of pressure swing adsorption systems using reduced-order modeling. Ind Eng Chem Res 48(5):2327–2343

Alexandrov NM (1997) Multilevel methods for MDO. In: Alexandrov NM, Hussaini MY (eds) Multidisciplinary design optimization: state of the art. Society for Industrial and Applied Mathematics, Philadelphia

Alexandrov NM (1998) A trust-region framework for managing approximations in constrained optimization problems. In: Proceedings of the first ISSMO/NASA internet conference on approximation and fast real analysis techniques in engineering optimization, 14–27 June

Alexandrov NM, Dennis JE Jr (1998) Multilevel algorithms for nonlinear optimization. In: Borggaard J, Burns J, Cliff E, Schreck S (eds) Computational methods for optimal design and control. Birkhäuser, Basel

Alexandrov NM, Dennis JE Jr, Lewis RM, Torczon V (1998) A trust-region framework for managing the use of approximate models in optimization. Struct Optim 15:16–23

Alexandrov NM, Lewis RM (2001) An overview of first-order model management for engineering optimization. Optim Eng 2(4):413–430

Alexandrov NM, Lewis RM, Gumbert CR, Green LL, Newman PA (2001) Approximation and model management in aerodynamic optimization with variable-fidelity models. J Aircr 38(6):1093–1101

Antoulas AC, Sorensen DC (2001) Approximation of large-scale dynamical systems: an overview. Int J Appl Math Comput Sci 11(5):1093–1121

Armaou A, Christofides PD (2002) Dynamic optimization of dissipative PDE systems using nonlinear order reduction. Chem Eng Sci 7:5083–5114

Astrid P, Weiland S, Willcox K, Backx T (2008) Missing point estimation in models described by proper orthogonal decomposition. IEEE Trans Autom Control 53(10):2237–2251

Balakrishna S, Biegler LT (1992) Targeting strategies for the synthesis and energy integration of nonisothermal reactor networks. Ind Eng Chem Res 31(9):2152–2164

Bendersky E, Christofides PD (2000) Optimization of transport-reaction processes using nonlinear model reduction. Chem Eng Sci 55:4349–4366

Benson HY, Shanno DF, Vanderbei RJ (2002) Interior-point methods for nonconvex nonlinear programming: filter-methods and merit functions. Comput Optim Appl 23(2):257–272

Bergmann M, Cordier L, Brancher J-P (2005) Control of the cylinder wake in the laminar regime by trust-region methods and POD reduced order models. In: Proceedings of the 44th IEEE conference on decision and control, and the European control conference 2005, Seville, Spain, 12–15 Dec

Bergmann M, Cordier L, Brancher J-P (2005) Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model. Phys Fluids 17:97–101

Brekelmans R., Driessen L., Hamers H., den Hertog D. (2005) Constrained optimization involving expensive function evaluations: A sequential approach. Eur. J. Oper. Res. 160:121–138

Bui-Thanh T, Damodaran M, Willcox K (2004) Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition. AIAA J 42(8):1505–1516

Bui-Thanh T, Willcox K, Ghattas O, Bloemen Waanders B (2007) Goal-oriented, model-constrained optimization for reduction of large-scale systems. J Comput Phys 224(2):880–896

Cao Y, Zhu J, Luo Z, Navon IM (2006) Reduced-order modeling of the upper tropical pacific ocean model using proper orthogonal decomposition. Comput Math Appl 52:1373–1386

Carter RG (1991) On the global convergence of trust region algorithms using inexact gradient information. SIAM J Numer Anal 28(1):251–265

Conn AR, Gould NM, Toint PL (2000) Trust-region methods, MPS-SIAM Series on Optimization. SIAM, Philadelphia

Couplet M, Basdevant C, Sagaut P (2005) Calibrated reduced-order POD-Galerkin system for fluid flow modelling. J Comput Phys 207:192–220

Curtis FE, Nocedal J (2008) Flexible penalty functions for nonlinear constrained optimization. IMA J Numer Anal 28:749–769

Dennis JE Jr, Schnabel RB (1983) Numerical methods for unconstrained optimization and nonlinear equations. Prentice Hall, Englewood Cliffs

Eldred MS, Giunta AA, Collis SS (2004) Second-order corrections for surrogate-based optimization with model hierarchies. In: Proceedings of the 10th AIAA/ISSMO multidisciplinary analysis and optimization conference, Albany, NY, Aug 30–Sept 1, pp 2004–4457. AIAA Paper

Fahl M (2000) Trust-region methods for flow control based on reduced order modelling. PhD thesis, Trier University

Fletcher R (1981) Practical methods of optimization. Constrained Optimization, vol 2. Wiley, Somerset

Fletcher R, Gould NIM, Leyffer S, Toint PL, Wächter A (2002) Global convergence of a trust-region SQP-filter algorithm for general nonlinear programming. SIAM J Optim 13(3):635–659

Fletcher R, Leyffer S (2002) Nonlinear programming without a penalty function. Math Program 91(2):239–269

Fletcher R, Leyffer S, Toint PL (1998) On the global convergence of an SLP-filter algorithm. Tech report, NA/183, Department of Mathematics, University of Dundee, Scotland, UK

Fletcher R, Leyffer S, Toint PL (2002) On the global convergence of a filter-SQP Algorithm. SIAM J Optim 13(1):44–59

Fletcher R, Leyffer S, Toint P (2006) A brief history of filter methods. Tech report, ANL/MCS-P1372-0906, Argonne National Laboratory, Mathematics and Computer Science Division

Fourer R, Gay DM, Kernighan BW (1990) A modeling language for mathematical programming. Manag Sci 36(5):519–554

Galletti B, Bruneau CH, Zannetti L, Iollo A (2004) Low-order modelling of laminar flow regimes past a confined square cylinder. J Fluid Mech 503:161–170

Giunta AA, Eldred MS (2000) Implementation of a trust region model management strategy in the DAKOTA optimization toolkit. In: Proceedings of the 8th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization, Long Beach, CA, 6–8 September, pp 2000–4935. AIAA Paper

Gratton S, Mouffe M, Sartenaer A, Toint PL, Tomanos D (2010) Numerical experience with a recursive trust-region method for multilevel nonlinear optimization. Optim Methods Softw 25(3):359–386

Gunzburger MD, Peterson JS, Shadid JN (2007) Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data. Comput Methods Appl Mech Eng 196:1030–1047

Jiang L, Fox VG, Biegler LT (2004) Simulation and optimal design of multiple-bed pressure swing adsorption systems. AIChE J 50(11):2904–2917

Keller GE (1983) Gas adsorption processes: state of the art. In: Whyte TE (ed) Industrial gas separations. ACS symposium series 223, vol 145. Amer Chem Soc, Washington

Ko D, Siriwardane R, Biegler LT (2005) Optimization of pressure swing adsorption and fractionated vacuum pressure swing adsorption processes for CO2 capture. Ind Eng Chem Res 44(21):8084–8094

Kragel B (2005) Streamline diffusion POD models in optimization. PhD thesis, Trier University

Kunisch K, Volkwein S (1999) Control of the burgers equation by a reduced-order approach using proper orthogonal decomposition. J Optim Theory Appl 102(2):345–371

Kunisch K, Volkwein S (2002) Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J Numer Anal 40(2):492–515

LeGresley PA, Alonso JJ (2000) Airfoil design optimization using reduced order models based on proper orthogonal decomposition. In: Fluids 2000 Conference and Exhibit. June 19–22, Denver, CO. pp 2000–2545. AIAA Paper

Lumley JL (1981) Coherent structures in turbulence. In: Meyer RE (ed) Transition and turbulence. Academic Press, New York, pp 215–242

Ly HV, Tran HT (2001) Modeling and control of physical processes using proper orthogonal decomposition. Math Comput Model 33(1–3):223–236

Moehlis J, Smith TR, Holmes P, Faisst H (2002) Models for turbulent plane coquette flow using the proper orthogonal decomposition. Phys Fluids 14(7):2493–2507

Nocedal J, Wright SJ (1999) Numerical optimization. Springer, New York

Park HM, Cho DH (1996) The use of the Karhunen-Loéve decomposition for the modeling of distributed parameter systems. Chem Eng Sci 51(1):81–98

Ruthven DM, Farooq S, Knaebel KS (1994) Pressure swing adsorption. VCH Publishers, New York

Shvartsman SY, Theodoropoulos C, Rico-Martinez R, Kevrekidis IG, Titi ES, Mountziaris TJ (2000) Order reduction for nonlinear dynamic models of distributed reacting systems. J Process Control 10:177–184

Sircar S (2002) Pressure swing adsorption: commentaries. Ind Eng Chem Res 41(6):1389–1392

Sirovich L (1987) Turbulence and the dynamics of coherent structures. Q Appl Math 45(3):561–571

Theodoropoulou A, Adomaitis RA, Zafiriou E (1998) Model reduction for optimization of rapid thermal chemical vapor deposition systems. IEEE Trans Semicond Manuf 11(1):85–98

Toint PL (1988) Global convergence of a class of trust-region methods for nonconvex minimization in Hilbert space. IMA J Numer Anal 8:231–252

Ulbrich M, Ulbrich S, Vicente LN (2003) A globally convergent primal-dual interior-point filter method for nonconvex nonlinear programming. Math Program 100(2):379–410

Wächter A, Biegler LT (2005a) Line search filter methods for nonlinear programming: local convergence. SIAM J Optim 16(1):32–48

Wächter A, Biegler LT (2005b) Line search filter methods for nonlinear programming: motivation and global convergence. SIAM J Optim 16(1):1–31

Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 106(1):25–57

Weickum G, Eldred MS, Maute K (2006) Multi-point extended reduced order modeling for design optimization and uncertainty analysis. In: 2nd AIAA multidisciplinary design optimization specialist conference, 1–4 May, Newport, RI. AIAA Paper 2006-2145

Willcox K, Peraire J (2002) Balanced model reduction via the proper orthogonal decomposition. AIAA J 40(11):2323–2330

Yang RT (1997) Gas separation by adsorption processes. Butterworths, Boston

Yuan T, Cizmas PG, O’Brien T (2005) A reduced-order model for a bubbling fluidized bed based on proper orthogonal decomposition. Comput Chem Eng 30:243–259