A trial on artificial neural networks in predicting sex through bone length measurements on the first and fifth phalanges and metatarsals

Computers in Biology and Medicine - Tập 115 - Trang 103490 - 2019
Muhammed Kamil Turan1, Zulal Oner2, Yusuf Secgin2, Serkan Oner3
1Department of Medical Biology, Karabuk University, Karabük, Turkey
2Department of Anatomy, Karabuk University, Karabük, Turkey
3Department of Radiology, Karabuk University, Karabük, Turkey

Tài liệu tham khảo

du Jardin, 2009, A comparison between neural network and other metric methods to determine sex from the upper femur in a modern French population, Forensic Sci. Int., 192, 127, 10.1016/j.forsciint.2009.07.014 Darmawan, 2015, Comparison on three classification techniques for sex estimation from the bone length of Asian children below 19 years old: an analysis using different group of ages, Forensic Sci. Int., 247, 130, 10.1016/j.forsciint.2014.11.007 Kim, 2013, Sex determination using discriminant analysis of the medial and lateral condyles of the femur in Koreans, Forensic Sci. Int., 233, 121, 10.1016/j.forsciint.2013.08.028 Mahfouz, 2007, Patella sex determination by 3D statistical shape models and nonlinear classifiers, Forensic Sci. Int., 173, 161, 10.1016/j.forsciint.2007.02.024 Akhlaghi, 2017, Research paper: sex determination based on radiographic examination of metatarsal bones in Iranian population, Int. J. Med. Toxicol. Forensic Med., 7 Lin, 2014, Sex determination from the mandibular ramus flexure of Koreans by discrimination function analysis using three-dimensional mandible models, Forensic Sci. Int., 236, 191, 10.1016/j.forsciint.2013.12.015 Kim, 2013, Sex determination from calcaneus in Korean using discriminant analysis, Forensic Sci. Int., 228, 177, 10.1016/j.forsciint.2013.03.012 Gapert, 2009, Sex determination from the occipital condyle: discriminant function analysis in an eighteenth and nineteenth century British sample, Am. J. Phys. Anthropol., 138, 384, 10.1002/ajpa.20946 El Morsi, 2013, Sex determination by the length of metacarpals and phalanges: X-ray study on Egyptian population, J. Forensic Leg. Med., 20, 6, 10.1016/j.jflm.2012.04.020 Eshak, 2011, Gender determination from hand bones length and volume using multidetector computed tomography: a study in Egyptian people, J. Forensic Leg. Med., 18, 246, 10.1016/j.jflm.2011.04.005 Steyn, 2008, Metric sex determination from the pelvis in modern Greeks, Forensic Sci. Int., 179, 86, 10.1016/j.forsciint.2008.04.022 Fawzy, 2010, Stature and body weight estimation from various footprint measurements among Egyptian population, J. Forensic Sci., 55, 884, 10.1111/j.1556-4029.2010.01372.x Albanese, 2008, A metric method for sex determination using the proximal femur and fragmentary hipbone, J. Forensic Sci., 53, 1283 Francesquini Junior, 2007, Identification of sex using cranial base measurements, J. Forensic Odontostomatol., 25, 7 Torwalt, 2005, A test of sex determination from measurements of chest radiographs, J. Forensic Sci., 50, 785, 10.1520/JFS2004425 Bakholdina, 2016, Digit ratio (2D:4D): is it possible to use it for sex determination in the study of human skeletal remains?, Am. J. Hum. Biol., 28, 591, 10.1002/ajhb.22824 Python Software Foundation, 2019 Pedregosa, 2011, Scikit-learn: machine learning in Python, J. Mach. Learn. Res., 2825 GNU PSPP Pater, 2016, Application of artificial neural networks and genetic algorithms for crude fractional distillation process modeling, Neural. Evol. Comput, abs/1605.00097, n.pag. Avuclu, 2018, New approaches to determine age and gender in image processing techniques using multilayer perceptron neural network, Appl. Soft. Comput., 70, 157, 10.1016/j.asoc.2018.05.033 Bottou, 2012, Stochastic gradient descent tricks Vaswani, 2018 Panchal, 2014, Review on methods of selecting number of hidden nodes in artificial neural network, Int. J. Comput. Sci. Mob. Comput., 3, 455 Xu, 2008, A novel approach for determining the optimal number of hidden layer neurons for FNN's and its application in data mining Puisoru, 2006, Analysis of mandibular variability in humans of different geographic areas, Ann. Anat., 188, 547, 10.1016/j.aanat.2006.05.015 Saini, 2011, Mandibular ramus: an indicator for sex in fragmentary mandible, J. Forensic Sci., 56 Franklin, 2007, Sexual dimorphism in the subadult mandible: quantification using geometric morphometrics, J. Forensic Sci., 52, 6, 10.1111/j.1556-4029.2006.00311.x Soni, 2010, Determination of sex from femur: discriminant analysis, J. Anat. Soc. India, 59, 216, 10.1016/S0003-2778(10)80029-2 Blackard, 1999, Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables, Comput. Electron. Agric., 24, 131, 10.1016/S0168-1699(99)00046-0 Byra, 2018, Discriminant analysis of neural style representations for breast lesion classification in ultrasound, Biocybern. Biomed. Eng., 38, 684, 10.1016/j.bbe.2018.05.003 Kumar, 2006, Artificial neural network vs linear discriminant analysis in credit ratings forecast: a comparative study of prediction performances, Rev. Account. Financ., 5, 216, 10.1108/14757700610686426 Eman, 2017, Using discriminant analysis and artificial neural network models for classification and prediction of fertility status of friesian cattle, Am. J. Appl. Math. Stat., 5, 90, 10.12691/ajams-5-3-1 Case, 2007, Sex determination from hand and foot bone lengths, J. Forensic Sci., 52, 264, 10.1111/j.1556-4029.2006.00365.x Mountrakis, 2010, Sex determination using metatarsal osteometrics from the Athens collection, Forensic Sci. Int., 200, 178, 10.1016/j.forsciint.2010.03.041