A transparent bending-insensitive pressure sensor

Nature Nanotechnology - Tập 11 Số 5 - Trang 472-478 - 2016
Sungwon Lee1, Amir Reuveny1, Jonathan T. Reeder1, Sunghoon Lee1, Hanbit Jin1, Qihan Liu2, Tomoyuki Yokota1, Tsuyoshi Sekitani1, Takashi Isoyama3, Yusuke Abe3, Zhigang Suo2, Takao Someya4
1Department of Electrical and Electronic Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan
2Kevli Institute of Bionano Technology and Science, John A, Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, 02138, Massachussetts, USA
3Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan
4Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), 7-3-1 Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abe, Y. et al. Physiological control of a total artificial heart: conductance- and arterial pressure-based control. J. Appl. Phys. 84, 868–876 (1998).

Pang, C., Lee, C. & Suh, K.-Y. Recent advances in flexible sensors for wearable and implantable devices. J. Appl. Polym. Sci. 130, 1429–1441 (2013).

Kim, D. H. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nature Mater. 9, 511–517 (2010).

Kim, D. H. et al. Epidermal electronics. Science 333, 838–843 (2011).

Jeong, J.-W. et al. Materials and potimized designs for human–machine interfaces via epidermal electronics. Adv. Mater. 25, 6839–6849 (2013).

Sekitani, T. & Someya, T. Human-friendly organic integrated circuits. Mater. Today 14, 398–407 (2011).

Kim, D. H. et al. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nature Mater. 10, 316–323 (2011).

Lipomi, D. J. et al. Skin-like pressure and strain sensor based on transparent elastic films of carbon nanotubes. Nature Nanotech. 6, 788–792 (2011).

Pang, C. et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nature Mater. 11, 795–801 (2012).

Someya, T. et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl Acad. Sci. USA 101, 9966–9970 (2004).

Hammock, M. L., Chortos, A., Tee, B. C.-k., Tok, J. B.-H. & Bao, Z. The evalution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25, 5997–6038 (2013).

Viventi, J. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nature Neurosci. 14, 1599–1605 (2011).

Xu, L. et al. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nature Commun. 5, 3329 (2014).

Mannsfeld, S. C. B. et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature Mater. 9, 859–864 (2010).

Someya, T. et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl Acad. Sci. USA 102, 12321–12325 (2005).

Wang, C. et al. User-interactive electronic skin for instantaneous pressure visualization. Nature Mater. 12, 899–904 (2013).

Pan, L. et al. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nature Commun. 5, 3002 (2014).

Takei, K. et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Mater. 9, 821–826 (2010).

Schwartz, G. et al. Flexible polymer transistor with high pressure sensitivity for application in electronic skin and health monitoring. Nature Commun. 4, 1859 (2013).

Gong, S. et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nature Commun. 5, 3132 (2014).

Dagdeviren, C. et al. Conformable-amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nature Commun. 5, 4496 (2014).

Sekitani, T. et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nature Mater. 8, 494–499 (2009).

Fukushima, T. et al. Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 300, 2072–2074 (2003).

Bhardwaj, N. & Kundu, S. C. Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28, 325–347 (2010).

Kim, T. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013).

Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).

Lee, S. et al. A strain-absorbing design for tissue–machine interfaces using a tunable adhesive gel. Nature Commun. 5, 5898 (2014).

Gibson, L. J. & Ashelby, M. F. Cellular Solids: Structure and Properties (Cambridge Univ. Press, 1999).