A transformation rule associated with $$P-$$extremal functions and holomorphic mappings
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bayraktar, T., T. Bloom, and N. Levenberg. 2018. Pluripotential theory and convex bodies. Matematicheskiĭ Sbornik 209 (3): 67–101. https://doi.org/10.4213/sm8893.
Bayraktar, T., S. Hussung, N. Levenberg, and M. Perera. 2020. Pluripotential theory and convex bodies: A Siciak-Zaharjuta theorem. Computational Methods and Function Theory 20 (3–4): 571–590. https://doi.org/10.1007/s40315-020-00345-6.
Bos, L., and N. Levenberg. 2018. Bernstein-Walsh theory associated to convex bodies and applications to multivariate approximation theory. Computational Methods and Function Theory 18 (2): 361–388. https://doi.org/10.1007/s40315-017-0220-4.
Klimek, M. 1991. Pluripotential theory (Vol. 6): The Clarendon Press, Oxford University Press, New York.
Levenberg, N., and S. Ma’u. 2020. C-Robin functions and applications. Analysis Mathematica 46 (4): 781–819. https://doi.org/10.1007/s10476-020-0046-6.
Levenberg, N., and M. Perera. 2020. A global domination principle for $$P-$$pluripotential theory. Complex Analysis and Spectral Theory, Contemporary Mathematics 743, 11–20. Amer. Math. Soc., Providence, RI.
Perera, M. 2021. Pluripotential theory associated with convex bodies (Publication No. 28411385) [Doctoral dissertation, Indiana University]. ProQuest Dissertations and Theses Global.