A transformation rule associated with $$P-$$extremal functions and holomorphic mappings

Menuja Perera1,2
1Department of Mathematics, Virginia Tech, Blacksburg, USA
2Department of Mathematics, Indiana University, Bloomington, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bayraktar, T., T. Bloom, and N. Levenberg. 2018. Pluripotential theory and convex bodies. Matematicheskiĭ Sbornik 209 (3): 67–101. https://doi.org/10.4213/sm8893.

Bayraktar, T., S. Hussung, N. Levenberg, and M. Perera. 2020. Pluripotential theory and convex bodies: A Siciak-Zaharjuta theorem. Computational Methods and Function Theory 20 (3–4): 571–590. https://doi.org/10.1007/s40315-020-00345-6.

Bos, L., and N. Levenberg. 2018. Bernstein-Walsh theory associated to convex bodies and applications to multivariate approximation theory. Computational Methods and Function Theory 18 (2): 361–388. https://doi.org/10.1007/s40315-017-0220-4.

Klimek, M. 1991. Pluripotential theory (Vol. 6): The Clarendon Press, Oxford University Press, New York.

Levenberg, N., and S. Ma’u. 2020. C-Robin functions and applications. Analysis Mathematica 46 (4): 781–819. https://doi.org/10.1007/s10476-020-0046-6.

Levenberg, N., and M. Perera. 2020. A global domination principle for $$P-$$pluripotential theory. Complex Analysis and Spectral Theory, Contemporary Mathematics 743, 11–20. Amer. Math. Soc., Providence, RI.

Perera, M. 2021. Pluripotential theory associated with convex bodies (Publication No. 28411385) [Doctoral dissertation, Indiana University]. ProQuest Dissertations and Theses Global.

Ransford, T. 1995. Potential theory in the complex plane (Vol. 28): Cambridge University Press, Cambridge.