A traffic data interpolation method for IoT sensors based on spatio-temporal dependence

Internet of Things - Tập 21 - Trang 100648 - 2023
Zhi Cai1, Yuyu Shu1, Xing Su1, Limin Guo1, Zhiming Ding1
1Beijing University of Technology, No. 100, pingleyuan, 100124, Beijing, China

Tài liệu tham khảo

Dass, 2020, T-safe: Trustworthy service provisioning for IoT-based intelligent transport systems, IEEE Trans. Veh. Technol., 69, 9509, 10.1109/TVT.2020.3004047 Made Sri Arsa, 2017, 199 Guo, 2021, Optimized graph convolution recurrent neural network for traffic prediction, IEEE Trans. Intell. Transp. Syst., 22, 1138, 10.1109/TITS.2019.2963722 PeMS, 2021 Zhong, 2004, Estimation of missing traffic counts using factor, genetic, neural, and regression techniques, Transp. Res. C, 12, 139, 10.1016/j.trc.2004.07.006 Qu, 2009, PPCA-based missing data imputation for traffic flow volume: A systematical approach, IEEE Trans. Intell. Transp. Syst., 10, 512, 10.1109/TITS.2009.2026312 Duan, 2014, A deep learning based approach for traffic data imputation, 912 Han, 2020, Content-aware traffic data completion in ITS based on generative adversarial nets, IEEE Trans. Veh. Technol., 69, 11950, 10.1109/TVT.2020.3007025 Yin, 2012, Imputing erroneous data of single-station loop detectors for nonincident conditions: Comparison between temporal and spatial methods, J. Intell. Transp. Syst., 16, 159, 10.1080/15472450.2012.694788 Tan, 2013, A tensor-based method for missing traffic data completion, Transp. Res. C, 28, 15, 10.1016/j.trc.2012.12.007 Ling, 2021, T-product factorization method for internet traffic data completion with spatio-temporal regularization, Comput. Optim. Appl., 80, 883, 10.1007/s10589-021-00315-1 Li, 2014, Missing traffic data: comparison of imputation methods, Intell. Transp. Syst. Iet, 8, 51, 10.1049/iet-its.2013.0052 Chen, 2017, Ensemble correlation-based low-rank matrix completion with applications to traffic data imputation, Knowl.-Based Syst., 132, 10.1016/j.knosys.2017.06.010 Liu, 2008, Imputation of missing traffic data during holiday periods, Transp. Plann. Technol., 31, 525, 10.1080/03081060802364505 Tak, 2016, Data-driven imputation method for traffic data in sectional units of road links, IEEE Trans. Intell. Transp. Syst., 17, 1762, 10.1109/TITS.2016.2530312 Li, 2013, Efficient missing data imputing for traffic flow by considering temporal and spatial dependence, Transp. Res. C, 34, 108, 10.1016/j.trc.2013.05.008 Ku, 2016, A clustering-based approach for data-driven imputation of missing traffic data, 1 Janacek, 2010, Time series analysis forecasting and control, J. Time Series Anal., 31, 303, 10.1111/j.1467-9892.2009.00643.x Datla, 2008 Jiang, 2021, Imputation of missing traffic flow data using denoising autoencoders, Procedia Comput. Sci., 184, 84, 10.1016/j.procs.2021.03.122 Liang, 2021 Chen, 2020, Traffic flow imputation using parallel data and generative adversarial networks, IEEE Trans. Intell. Transp. Syst., 21, 1624, 10.1109/TITS.2019.2910295 Ren, 2020, ST-SiameseNet: Spatio-temporal siamese networks for human mobility signature identification, 1306 Xu, 2020, GE-GAN: A novel deep learning framework for road traffic state estimation, Transp. Res. C, 117, 10.1016/j.trc.2020.102635 Liu, 2017, Short-term traffic flow prediction with conv-LSTM, 1 Cai, 2016, A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting, Transp. Res. C, 62, 21, 10.1016/j.trc.2015.11.002 Hochreiter, 1997, Long short-term memory, Neural Comput., 9, 1735, 10.1162/neco.1997.9.8.1735