A total-internal-reflection-based Fabry–Pérot resonator for ultra-sensitive wideband ultrasound and photoacoustic applications
Tài liệu tham khảo
Chen, 2021, Recent developments in photoacoustic imaging and sensing for nondestructive testing and evaluation, Vis. Comput. Ind. Biomed. Art, vol. 4, 6, 10.1186/s42492-021-00073-1
A.B.E. Attia, G. Balasundaram, M. Moothanchery, U.S. Dinish, R.Z. Bi, V. Ntziachristos, M. Olivo, A review of clinical photoacoustic imaging: current and future trends, Photoacoustics, 16, 2019, 100144.
G. Paltauf, R. Nuster, M. Frenz, Progress in biomedical photoacoustic imaging instrumentation toward clinical application, J. Appl. Phys., 128(18), 2020, 180907.
Y.R. Gu, Y.Y. Sun, X. Wang, H.Y. Li, J.F. Qiu, W.Z. Lu, Application of photoacoustic computed tomography in biomedical imaging: a literature review, Bioeng. Transl. Med., 2022, e10419.
J. Yao, L.V. Wang, Photoacoustic microscopy, Laser Photonics Rev., 7(5), 2013, pp. 758–778.
J. Kim, J.Y. Kim, S. Jeon, J.W. Baik, S.H. Cho, C. Kim, Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers, Light Sci. Appl., 8, 2019, 103.
Yakovlev, 2013, Ultrasensitive non-resonant detection of ultrasound with plasmonic metamaterials, Adv. Mater., vol. 25, 2351, 10.1002/adma.201300314
Deng, 2021, Design and fabrication of a novel dual-frequency confocal ultrasound transducer for microvessels super-harmonic imaging, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 68, 1272, 10.1109/TUFFC.2020.3028505
Dong, 2017, Optical detection of ultrasound in photoacoustic imaging, IEEE Trans. Biomed. Eng., vol. 64, 4, 10.1109/TBME.2016.2605451
Zhou, 2011, Piezoelectric films for high frequency ultrasonic transducers in biomedical applications, Prog. Mater. Sci., vol. 56, 139, 10.1016/j.pmatsci.2010.09.001
Zhang, 2008, Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues, Appl. Opt., vol. 47, 561, 10.1364/AO.47.000561
Learkthanakhachon, 2018, Optical detection of ultrasound by lateral shearing interference of a transparent PDMS thin film, Opt. Lett., vol. 43, 5797, 10.1364/OL.43.005797
Yang, 2021, A phase-shifted surface plasmon resonance sensor for simultaneous photoacoustic volumetric imaging and spectroscopic analysis, ACS Sens., vol. 6, 1840, 10.1021/acssensors.1c00029
H. Ichihashi, S. Ueno, T. Fukunaga, S. Takayanagi, M. Matsukawa, Signal amplification of the transient response measured by the subnanosecond pump-probe method based on surface plasmon resonance, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 69(6), 2022, pp. 2152–2161.
Nuster, 2007, Comparison of surface plasmon resonance devices for acoustic wave detection in liquid, Opt. Express, vol. 15, 6087, 10.1364/OE.15.006087
H. Li, B.Q. Dong, Z. Zhang, H.F. Zhang, C. Sun, A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy, Sci. Rep., 4, 2014, 4496.
H. Li, B.Q. Dong, X. Zhang, X. Shu, X.F. Chen, R.H. Hai, D.A. Czaplewski, H.F. Zhang, C. Sun, Disposable ultrasound-sensing chronic cranial window by soft nanoimprinting lithography, Nat. Commun., 10, 2019, 4277.
W. Song, Y.S. Dong, Y.X. Shan, F. Yang, C.J. Min, X.C. Yuan, Ultrasensitive broadband photoacoustic microscopy based on common-path interferometric surface plasmon resonance sensing, Photoacoustics, 28, 2022, 100419.
Song, 2022, Toward ultrasensitive, broadband, reflection‐mode in vivo photoacoustic microscopy using a bare glass, Laser Photonics Rev., vol. 17, 10.1002/lpor.202200030
Yang, 2021, Broadband surface plasmon resonance sensor for fast spectroscopic photoacoustic microscopy, Photoacoustics, vol. 24, 10.1016/j.pacs.2021.100305
Kabashin, 2009, Plasmonic nanorod metamaterials for biosensing, Nat. Mater., vol. 8, 867, 10.1038/nmat2546
E. Baumann, U. Pohle, E. Zhang, T. Allen, C. Villringer, S. Pulwer, H. Gerhardt, J. Laufer, A backward-mode optical-resolution photoacoustic microscope for 3D imaging using a planar Fabry-Perot sensor, Photoacoustics, 24, 2021, 100293.
Shen, 2018, Adjustable microscopic measurement of nanogap waveguide and plasmonic structures, Appl. Opt., vol. 57, 3453, 10.1364/AO.57.003453
Morris, 2009, A Fabry–Pérot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure, J. Acoust. Soc. Am., vol. 125, 3611, 10.1121/1.3117437
Cox, 2007, The frequency-dependent directivity of a planar Fabry-Perot polymer film ultrasound sensor, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 54, 394, 10.1109/TUFFC.2007.253
J.A. Guggenheim, J. Li, T.J. Allen, R.J. Colchester, S. Noimark, O. Ogunlade, I.P. Parkin, I. Papakonstantinou, A.E. Desjardins, E.Z. Zhang, P.C. Beard, Ultrasensitive plano-concave optical microresonators for ultrasound sensing, Nat. Photonics, 11(11), 2017, pp. 714-+.
J. Flannery, T. Yoon, G. Bappi, R.A. Maruf, C.M. Haapamaki, M. Bajcsy, Dielectric metasurfaces as mirrors for Fabry-Perot cavities integrated into hollow-core waveguides, Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), Vancouver, 2016/07/18 2016: Optica Publishing Group, in OSA technical Digest (online).
D. Sikdar, A.A. Kornyshev, An Electro-tunable Fabry–Perot Interferometer Based on Dual Mirror-on-mirror Nanoplasmonic Metamaterials, 8(12), 2019, pp. 2279–2290.
Buchmann, 2017, Characterization and modeling of Fabry-Perot ultrasound sensors with hard dielectric mirrors for photoacoustic imaging, Appl. Opt., vol. 56, 5039, 10.1364/AO.56.005039
A.A. Oraevsky, L.V. Wang, J. Buchmann, E. Zhang, C. Scharfenorth, B. Spannekrebs, C. Villringer, J. Laufer, Evaluation of Fabry-Perot polymer film sensors made using hard dielectric mirror deposition, in Proceedings of the Photons Plus Ultrasound: Imaging and Sensing, 2016.
T. Wang, R. Cao, B. Ning, A.J. Dixon, J.A. Hossack, A.L. Klibanov, Q. Zhou, A. Wang, S. Hu, All-optical photoacoustic microscopy based on plasmonic detection of broadband ultrasound, Appl. Phys. Lett., 107(15), 2015, 153702.
F. Yang, W. Song, C. Zhang, C. Min, H. Fang, L. Du, P. Wu, W. Zheng, C. Li, S. Zhu, X. Yuan, Broadband graphene-based photoacoustic microscopy with high sensitivity, Nanoscale, 10(18), 2018, pp. 8606–8614.
X. Zhou, D. Cai, X. He, S.-L. Chen, X. Wang, T. Yang, Ultrasound detection at fiber end-facets with surface plasmon resonance cavities, Opt. Lett., 43(4), 2018, pp. 775–778.
X. Zhang, J. Qiu, X. Li, J. Zhao, L. Liu, Complex refractive indices measurements of polymers in visible and near-infrared bands, Appl. Opt., 59(8), 2020, pp. 2337–2344.
Jiang, 2022, High aspect-ratio open grating Fabry-Perot resonator for high-sensitivity refractive index sensing, IEEE Sens. J., vol. 22, 15923, 10.1109/JSEN.2022.3188545
Shen, 2019, A general description of the performance of surface plasmon sensors using a transmission line resonant circuit model, IEEE Sens. J., vol. 19, 11281, 10.1109/JSEN.2019.2933320
Yang, 2021, A phase-shifted surface plasmon resonance sensor for simultaneous photoacoustic volumetric imaging and spectroscopic analysis, ACS Sens., vol. 6, 1840, 10.1021/acssensors.1c00029
Zhu, 2020, Resolution-matched reflection mode photoacoustic microscopy and optical coherence tomography dual modality system, Photoacoustics, vol. 19, 10.1016/j.pacs.2020.100188
Song, 2019, Isometrically resolved photoacoustic microscopy based on broadband surface plasmon resonance ultrasound sensing, ACS Appl. Mater. Interfaces, vol. 11, 27378, 10.1021/acsami.9b03164
R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light, North-Holland Publishing Company, 1977.
