A topological and conformational stability alphabet for multipass membrane proteins
Tóm tắt
Từ khóa
Tài liệu tham khảo
Matthews, E.E., Zoonens, M. & Engelman, D.M. Dynamic helix interactions in transmembrane signaling. Cell 127, 447–450 (2006).
Krishnamurthy, H., Piscitelli, C.L. & Gouaux, E. Unlocking the molecular secrets of sodium-coupled transporters. Nature 459, 347–355 (2009).
Rakoczy, E.P., Kiel, C., McKeone, R., Stricher, F. & Serrano, L. Analysis of disease-linked rhodopsin mutations based on structure, function, and protein stability calculations. J. Mol. Biol. 405, 584–606 (2011).
Partridge, A.W., Therien, A.G. & Deber, C.M. Missense mutations in transmembrane domains of proteins: phenotypic propensity of polar residues for human disease. Proteins 54, 648–656 (2004).
Cymer, F., von Heijne, G. & White, S.H. Mechanisms of integral membrane protein insertion and folding. J. Mol. Biol. 427, 999–1022 (2015).
Petukhov, M., Muñoz, V., Yumoto, N., Yoshikawa, S. & Serrano, L. Position dependence of non-polar amino acid intrinsic helical propensities. J. Mol. Biol. 278, 279–289 (1998).
Minor, D.L. Jr. & Kim, P.S. Measurement of the beta-sheet-forming propensities of amino acids. Nature 367, 660–663 (1994).
Bystroff, C. & Baker, D. Prediction of local structure in proteins using a library of sequence-structure motifs. J. Mol. Biol. 281, 565–577 (1998).
Wolf, E., Kim, P.S. & Berger, B. MultiCoil: a program for predicting two- and three-stranded coiled coils. Protein Sci. 6, 1179–1189 (1997).
Zheng, F., Zhang, J. & Grigoryan, G. Tertiary structural propensities reveal fundamental sequence/structure relationships. Structure 23, 961–971 (2015).
King, N.P. et al. Accurate design of co-assembling multi-component protein nanomaterials. Nature 510, 103–108 (2014).
Bill, R.M. et al. Overcoming barriers to membrane protein structure determination. Nat. Biotechnol. 29, 335–340 (2011).
Liu, Y., Engelman, D.M. & Gerstein, M. Genomic analysis of membrane protein families: abundance and conserved motifs. Genome Biol. 3, h0054 (2002).
Zhang, S.Q. et al. The membrane- and soluble-protein helix-helix interactome: similar geometry via different interactions. Structure 23, 527–541 (2015).
Mueller, B.K., Subramaniam, S. & Senes, A. A frequent, GxxxG-mediated, transmembrane association motif is optimized for the formation of interhelical Cα-H hydrogen bonds. Proc. Natl. Acad. Sci. USA 111, E888–E895 (2014).
Langosch, D. & Arkin, I.T. Interaction and conformational dynamics of membrane-spanning protein helices. Protein Sci. 18, 1343–1358 (2009).
Schneider, D. Rendezvous in a membrane: close packing, hydrogen bonding, and the formation of transmembrane helix oligomers. FEBS Lett. 577, 5–8 (2004).
Senes, A., Gerstein, M. & Engelman, D.M. Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions. J. Mol. Biol. 296, 921–936 (2000).
Walters, R.F. & DeGrado, W.F. Helix-packing motifs in membrane proteins. Proc. Natl. Acad. Sci. USA 103, 13658–13663 (2006).
Nugent, T. & Jones, D.T. Accurate de novo structure prediction of large transmembrane protein domains using fragment-assembly and correlated mutation analysis. Proc. Natl. Acad. Sci. USA 109, E1540–E1547 (2012).
Hopf, T.A. et al. Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149, 1607–1621 (2012).
Marks, D.S., Hopf, T.A. & Sander, C. Protein structure prediction from sequence variation. Nat. Biotechnol. 30, 1072–1080 (2012).
Sarkar, C.A. et al. Directed evolution of a G protein-coupled receptor for expression, stability, and binding selectivity. Proc. Natl. Acad. Sci. USA 105, 14808–14813 (2008).
Cammett, T.J. et al. Construction and genetic selection of small transmembrane proteins that activate the human erythropoietin receptor. Proc. Natl. Acad. Sci. USA 107, 3447–3452 (2010).
Gurezka, R. & Langosch, D. In vitro selection of membrane-spanning leucine zipper protein-protein interaction motifs using POSSYCCAT. J. Biol. Chem. 276, 45580–45587 (2001).
Wang, Y. & Barth, P. Evolutionary-guided de novo structure prediction of self-associated transmembrane helical proteins with near-atomic accuracy. Nat. Commun. 6, 7196 (2015).
Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).
Chang, C.-C. & Lin, C.-J. LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 1–27 (2011).
Barth, P., Schonbrun, J. & Baker, D. Toward high-resolution prediction and design of transmembrane helical protein structures. Proc. Natl. Acad. Sci. USA 104, 15682–15687 (2007).
Chen, K.Y., Zhou, F., Fryszczyn, B.G. & Barth, P. Naturally evolved G protein-coupled receptors adopt metastable conformations. Proc. Natl. Acad. Sci. USA 109, 13284–13289 (2012).
Barth, P., Wallner, B. & Baker, D. Prediction of membrane protein structures with complex topologies using limited constraints. Proc. Natl. Acad. Sci. USA 106, 1409–1414 (2009).
Joh, N.H. et al. De novo design of a transmembrane Zn2-transporting four-helix bundle. Science 346, 1520–1524 (2014).
Dror, R.O. et al. Activation mechanism of the β2-adrenergic receptor. Proc. Natl. Acad. Sci. USA 108, 18684–18689 (2011).
Jayasinghe, S., Hristova, K. & White, S.H. MPtopo: a database of membrane protein topology. Protein Sci. 10, 455–458 (2001).
Kozma, D., Simon, I. & Tusnády, G.E. PDBTM: Protein Data Bank of transmembrane proteins after 8 years. Nucleic Acids Res. 41, D524–D529 (2013).
Andreani, J., Faure, G. & Guerois, R. Versatility and invariance in the evolution of homologous heteromeric interfaces. PLoS Comput. Biol. 8, e1002677 (2012).
Zhu, H., Sommer, I., Lengauer, T. & Domingues, F.S. Alignment of non-covalent interactions at protein-protein interfaces. PLoS One 3, e1926 (2008).
Tibshirani, R., Walther, G. & Hastie, T. Estimating the number of data clusters via the Gap statistic. J. Roy. Stat. Soc. B 63, 411–423 (2001).