A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish

Nature - Tập 459 Số 7249 - Trang 996-999 - 2009
Philipp Niethammer1, Clemens Grabher2,3, A. Thomas Look4, Timothy J. Mitchison1
1Department of Systems Biology, Harvard Medical School, Boston
2Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA,
3Present address: Karlsruhe Institute of Technology, Forschungszentrum Karlsruhe GmbH, Institute of Toxicology and Genetics, 76344 Eggenstein-Leopoldshafen, Germany.,
4Division of Hematology/Oncology, Department of Pediatrics, Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA,

Tóm tắt

Từ khóa


Tài liệu tham khảo

Belousov, V. V. et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nature Methods 3, 281–286 (2006)

Bienert, G. P., Schjoerring, J. K. & Jahn, T. P. Membrane transport of hydrogen peroxide. Biochim. Biophys. Acta 1758, 994–1003 (2006)

Oktyabrsky, O. N. & Smirnova, G. V. Redox regulation of cellular functions. Biochemistry 72, 132–145 (2007)

Redd, M. J., Cooper, L., Wood, W., Stramer, B. & Martin, P. Wound healing and inflammation: embryos reveal the way to perfect repair. Phil. Trans. R. Soc. Lond. B 359, 777–784 (2004)

Renshaw, S. A., Loynes, C. A., Elworthy, S., Ingham, P. W. & Whyte, M. K. Modeling inflammation in the zebrafish: how a fish can help us understand lung disease. Exp. Lung Res. 33, 549–554 (2007)

Grabher, C. et al. Birth and life of tissue macrophages and their migration in embryogenesis and inflammation in medaka. J. Leukoc. Biol. 81, 263–271 (2007)

Huttenlocher, A. & Poznansky, M. C. Reverse leukocyte migration can be attractive or repulsive. Trends Cell Biol. 18, 298–306 (2008)

Maeda, H. et al. Fluorescent probes for hydrogen peroxide based on a non-oxidative mechanism. Angew. Chem. Int. Edn Engl. 43, 2389–2391 (2004)

Mathias, J. R. et al. Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J. Leukoc. Biol. 80, 1281–1288 (2006)

Hall, C., Flores, M. V., Storm, T., Crosier, K. & Crosier, P. The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC Dev. Biol. 7, 42 (2007)

Sen, C. K. & Roy, S. Redox signals in wound healing. Biochim. Biophys. Acta 1780, 1348–1361 (2008)

Bedard, K. & Krause, K. H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245–313 (2007)

Kawahara, T., Quinn, M. T. & Lambeth, J. D. Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes. BMC Evol. Biol. 7, 109 (2007)

Ameziane-El-Hassani, R. et al. Dual oxidase-2 has an intrinsic Ca2+-dependent H2O2-generating activity. J. Biol. Chem. 280, 30046–30054 (2005)

ten Freyhaus, H. et al. Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. Cardiovasc. Res. 71, 331–341 (2006)

Stielow, C. et al. Novel Nox inhibitor of oxLDL-induced reactive oxygen species formation in human endothelial cells. Biochem. Biophys. Res. Commun. 344, 200–205 (2006)

Lange, S. et al. Platelet-derived growth factor BB stimulates vasculogenesis of embryonic stem-cell-derived endothelial cells by calcium-mediated generation of reactive oxygen species. Cardiovasc. Res. 81, 159–168 (2009)

Tegtmeier, F. et al. Compounds containing a N-heteroaryl moiety linked to fused ring moieties for the inhibition of NAD(P)H oxidases and platelet activation. Patent WO/2005/111041. (2005)

Donko, A., Peterfi, Z., Sum, A., Leto, T. & Geiszt, M. Dual oxidases. Phil. Trans. R. Soc. Lond. B 360, 2301–2308 (2005)

Geiszt, M., Witta, J., Baffi, J., Lekstrom, K. & Leto, T. L. Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J. 17, 1502–1504 (2003)

Ha, E. M., Oh, C. T., Bae, Y. S. & Lee, W. J. A direct role for dual oxidase in Drosophila gut immunity. Science 310, 847–850 (2005)

Forteza, R., Salathe, M., Miot, F., Forteza, R. & Conner, G. E. Regulated hydrogen peroxide production by Duox in human airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 32, 462–469 (2005)

Wesley, U. V., Bove, P. F., Hristova, M., McCarthy, S. & van der Vliet, A. Airway epithelial cell migration and wound repair by ATP-mediated activation of dual oxidase 1. J. Biol. Chem. 282, 3213–3220 (2007)

Klyubin, I. V., Kirpichnikova, K. M. & Gamaley, I. A. Hydrogen peroxide-induced chemotaxis of mouse peritoneal neutrophils. Eur. J. Cell Biol. 70, 347–351 (1996)

Li, W., Liu, G., Chou, I. N. & Kagan, H. M. Hydrogen peroxide-mediated, lysyl oxidase-dependent chemotaxis of vascular smooth muscle cells. J. Cell. Biochem. 78, 550–557 (2000)

Todorovic, S. M. et al. Redox modulation of T-type calcium channels in rat peripheral nociceptors. Neuron 31, 75–85 (2001)

Kwon, J. et al. Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc. Natl Acad. Sci. USA 101, 16419–16424 (2004)

Zhao, M. et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-γ and PTEN. Nature 442, 457–460 (2006)

Subramanian, K. K. et al. Tumor suppressor PTEN is a physiologic suppressor of chemoattractant-mediated neutrophil functions. Blood 109, 4028–4037 (2007)

Nishio, M. et al. Control of cell polarity and motility by the PtdIns(3,4,5)P3 phosphatase SHIP1. Nature Cell Biol. 9, 36–44 (2007)

Nusslein-Volhard, C. & Dahm, R. Zebrafish (Oxford Univ. Press, 2002)

Chen, J. et al. Loss of function of def selectively up-regulates Delta113p53 expression to arrest expansion growth of digestive organs in zebrafish. Genes Dev. 19, 2900–2911 (2005)

Bertrand, J. Y. et al. Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo. Development 134, 4147–4156 (2007)