Đánh giá theo thời gian về sự thay đổi trong việc sinh ra các loài oxy phản ứng và hệ thống phòng thủ chống oxi hóa ở lúa mì trồng thủy canh trong phản ứng với ion chì (Pb2+)

Protoplasma - Tập 249 - Trang 1091-1100 - 2011
Gurpreet Kaur1, Harminder Pal Singh1, Daizy Rani Batish2, Ravinder Kumar Kohli2
1Department of Environment Studies, Panjab University, Chandigarh, India
2Department of Botany, Panjab University, Chandigarh, India

Tóm tắt

Chúng tôi đã khảo sát tác động của Pb2+ (8 và 40 mg l−1) đến sự sinh ra các loài oxy phản ứng và sự thay đổi trong các enzyme chống oxi hóa ở lúa mì được trồng thủy canh sau 24, 72 và 120 giờ tiếp xúc. Độ độc của Pb2+ thể hiện rõ hơn trên sự phát triển của rễ, và nó tương quan với việc tích lũy Pb lớn hơn ở rễ. Sự tiếp xúc với Pb (40 mg l−1) làm gia tăng nội dung anion superoxide, H2O2, và MDA trong rễ lúa mì lần lượt là 1.9- đến 2.2 lần, 56–255%, và 41–90% so với đối chứng. Sự suy giảm tính toàn vẹn của màng tế bào do Pb gây ra được khẳng định bởi sự gia tăng rò rỉ điện giải và định vị hóa histochemical in vivo. Hoạt động của các enzyme thu gom như superoxide dismutases và catalases đã tăng lên trong rễ lúa mì điều trị Pb từ 1.4 đến 5.7 lần so với nhóm đối chứng. Ngược lại, hoạt động của ascorbate và guaiacol peroxidases cũng như glutathione reductases đã giảm đáng kể, cho thấy sự không liên quan của chúng trong quá trình giải độc. Nghiên cứu kết luận rằng tổn thương oxy hóa do Pb2+ gây ra ở rễ lúa mì liên quan đến việc tích lũy H2O2 lớn hơn và sự hoạt động không còn của các enzyme thu gom liên quan.

Từ khóa

#Pb2+ #oxy phản ứng #enzyme chống oxi hóa #lúa mì thủy canh #độc tính chì

Tài liệu tham khảo

Bajji M, Kinet J-M, Lutts S (2002) The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul 36:61–70 Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–286 Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227 Choudhury S, Panda SK (2005) Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under chromium and lead phytotoxicity. Water Air Soil Pollut 167:73–90 Dogan M, Saygideger SD, Colak U (2009) Effect of lead toxicity on aquatic macrophyte Elodea canadensis Michx. Bull Environ Contam Toxicol 83:249–254 Egley GH, Paul RN, Vaughn KC, Duke SO (1983) Role of peroxidase in the development of water impermeable seed coats in Sida spinosa L. Planta 157:224–232 Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25 Foyer CH, Descourvières P, Kunert KJ (1994) Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ 17:507–523 Foyer CH, Souriau N, Perret S, Lelandais M, Kunert KJ, Pruvost C, Jouanin L (1995) Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109:1047–1057 Gajewska E, Slaba M, Andrzejewska R, Sklodowska M (2006) Nickel-induced inhibition of wheat root growth is related to H2O2 production, but not to lipid peroxidation. Plant Growth Regul 49:95–103 Gaspar T, Penel C, Hagege D, Greppin H (1991) Peroxidase in plant growth, differentiation, and development processes. In: Lobarzewski J, Greppin H, Penel C, Gaspar T (eds) Biochemical, molecular, and physiological aspects of plant peroxidases. Universite de Geneve Press, Geneva, pp 249–280 Gratäo PL, Prasad MNV, Cardoso PF, Lea PJ, Azevedo RA (2005) Phytoremediation: green technology for the cleanup of toxic metals in the environment. Braz J Plant Physiol 17:53–64 Gupta DK, Nicoloso FT, Schetinger MR, Rossato LV, Pereira LB, Castro GY, Srivastava S, Tripathi RD (2009) Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater 172:479–484 He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140 Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198 Islam E, Liu D, Li T, Yang X, Jin X, Mahmood Q, Tian S, Li J (2008) Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 154:914–926 Jiménez A, Hernández JA, del Rio LA, Sevilla F (1997) Evidence for the presence of the ascorbate–glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284 Khatib RA, Zhao J, Blom DA, Ghoshroy K, Creamer R, Ghoshroy S (2008) Microscopic analysis of lead accumulation in tobacco (Nicotiana tabacum var. Turkish) roots. Microsc Microanal 14:1528–1529 Liu D, Zou J, Meng Q, Zou J, Jiang W (2009) Uptake and accumulation and oxidative stress in garlic (Allium sativum L.) under lead phytotoxicity. Ecotoxicology 18:134–143 Lowry OH, Rosebrough NT, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275 Malecka A, Piechalak A, Morkunas I, Tomaszewska B (2008) Accumulation of lead in root cells of Pisum sativum. Acta Physiol Plant 30:629–637 Malecka A, Piechalak A, Tomaszewska B (2009) Reactive oxygen species production and antioxidative defense system in pea root tissues treated with lead ions: the whole roots level. Acta Physiol Plant 31:1053–1063 Malkowski E, Kita A, Galas W, Karez W, Michael K (2002) Lead distribution in corn seedlings (Zea mays L.) and its effect on growth and the concentration of potassium and calcium. Plant Growth Regul 37:69–76 Meyers DE, Auchterlonie GJ, Webb RI, Wood B (2008) Uptake and localisation of lead in the root system of Brassica juncea. Environ Pollut 153:323–332 Mustafa MG (1990) Biochemical basis of ozone toxicity. Free Rad Biol Med 9:245–265 Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880 Neill SJ, Desikan R, Hancock JT (2002) Hydrogen peroxide signaling. Curr Opin Plant Biol 5:388–395 Piotrowska A, Bajguzn A, Godlewska-Zyłkiewicz B, Zambrzycka E (2010) Changes in growth, biochemical components and antioxidant activity in aquatic plant Wolffia arrhiza (Lemnaceae) exposed to cadmium and lead. Arch Environ Contam Toxicol 58:594–604 Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bangalgram (Cicer arietinum L.). Chemosphere 60:97–104 Sahi SV, Bryant NL, Sharma NC, Singh SR (2002) Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environ Sci Technol 36:4676–4680 Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52 Singh HP, Batish DR, Kohli RK, Arora K (2007) Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul 53:65–73 Singh HP, Kaur S, Batish DR, Kohli RK (2009) Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide 20:289–297 Singh HP, Kaur G, Batish DR, Kohli RK (2011) Lead (Pb)-inhibited radicle emergence in Brassica campestris involves alterations in starch-metabolizing enzymes. Biol Trace Elem Res. doi:10.1007/s12011-011-9129-3 Sobrino AS, Miranda MG, Alvarez C, Quiroz A (2010) Bio-accumulation and toxicity of lead (Pb) in Lemna gibba L. (duckweed). J Environ Sci Health A Tox Hazard Subst Environ Eng 45:107–110 Stone JR, Yang S (2006) Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal 8:243–247 Sun Q, Ye ZH, Wang XR, Wong MH (2005) Increase of glutathione in mine population of Sedum alfredii: a Zn hyperaccumulator and Pb accumulator. Phytochemistry 66:2549–2556 Sun S-Q, Wang G-X, He M, Cao T (2011) Effect of Pb and Ni stress on oxidative parameters in three moss species. Ecotoxicol Environ Saf 74:1630–1635 Wierzbicka M, Obidzinska J (1998) The effect of lead on seed imbibition and germination in different plant species. Plant Sci 137:155–171