A time-adaptive fluid-structure interaction method for thermal coupling

Springer Science and Business Media LLC - Tập 13 Số 7 - Trang 331-340 - 2010
Philipp Birken1, Karsten J. Quint2, Stefan Hartmann3, Andreas Meister1
1Department of Mathematics and Natural Science, University of Kassel, Heinrich-Plett-Str. 40, 34125, Kassel, Germany
2Institute of Mechanics and Dynamics, University of Kassel, Mönchebergstr. 7, 34109, Kassel, Germany
3Institute of Applied Mechanics, Clausthal University of Technology, Adolph-Roemer-Str. 2A, 38678 Clausthal-Zellerfeld, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Banke A.L.: Practical applications of CFD in heat processing. Heat Treat. Prog. 5, 44–49 (2005)

Bendiksen, O.: A new approach to computational aeroelasticity. AIAA Paper AIAA-91-0939-CP, 17, 120–1727 (1991)

Bijl, H., Carpenter, M.H., Vatsa, V.N., Kennedy, C.A.: Implicit time integration schemes for the unsteady compressible navier-stokes equations: laminar flow. J. Comp. Phys. 179, 313–329 (2002)

Birken, P., Quint, K.J., Hartmann, S., Meister, A.: On coupling schemes for heat transfer in FSI applications. In: Hartmann, S., Meister, A., Schäfer, M., Turek, S. (eds.) Proceedings of the International Workshop on Fluid-Structure Interaction: Theory, Numerics and Applications Herrsching, 2009, pp. 21–30 (2009)

Buchlin J.M.: Convective heat transfer and infrared thermography. J. Appl. Fluid Mech. 3, 55–62 (2010)

Davis, G.A., Bendiksen, O.O.: Transonic panel flutter. AIAA paper AIAA 93–1476 (1993)

Diebels S., Ellsiepen P., Ehlers W.: Error-controlled Runge-Kutta time integration of a viscoplastic hybrid two-phases model. Technische Mechanik 19, 19–27 (1999)

Ellsiepen, P.: Zeits- und ortsadaptive Verfahren angewandt auf Mehrphasenprobleme poröser Medien. Dissertation, University of Stuttgart, Institute of Mechanics II (1999)

Ellsiepen P., Hartmann S.: Remarks on the interpretation of current non-linear finite-element-analyses as differential-algebraic equations. Int. J. Numer. Meth. Eng. 51, 679–707 (2001)

Farhat, C.: CFD-based nonlinear computational aeroelasticity. In: Stein, E., de Borst, R., Hughes, T.J. (eds.) Encyclopedia of Computational Mechanics, Volume 3: Fluids, pp. 459–480. John Wiley and Sons (2004)

Gerhold, T., Friedrich, O., Evans, J., Galle, M.: Calculation of complex three-dimensional configurations employing the DLR-TAU-code. AIAA Paper 97–0167 (1997)

Giles M.: Stability analysis of numerical interface conditions in fluid-structure thermal analysis. Int. J. Numer. Meth. Fluids 25, 421–436 (1997)

Guillard H., Farhat C.: On the significance of the geometric conservation law for flow computations on moving meshes. Comput. Meth. Appl. Mech. Engrg. 190, 1467–1482 (2000)

Hairer E., Nørsett S., Wanner G.: Solving Ordinary Differential Equations I, Series in Computational Mathematics. Springer, Berlin (1987)

Hairer E., Wanner G.: Solving Ordinary Differential Equations II, Series in Computational Mathematics 14. 3rd edn. Springer, Berlin (2004)

Hartmann S.: A remark on the application of the Newton-Raphson method in non-linear finite element analysis. Comput. Mech. 36, 100–116 (2005)

Hartmann, S.: TASA-FEM: Ein Finite-Elemente-Programm für raum-zeitadaptive Gekoppelte Strukturberechnungen Technical Report 1/2006. Institute of Mechanics, University of Kassel (2006)

Hartmann S., Kuhl D., Quint K.J.: Time-adaptive computation of thermoviscoplastic structures. In: Steinhoff, K., Maier, H.J., Biermann, D. (eds) Functionally Graded Materials in Industrial Mass Production, chap. 3.1., pp. 269–282. Verlag Wissenschaftliche Scripten, Auerbach (Germany) (2009)

Heck U., Fritsching U., Bauckhage K.: Fluid flow and heat transfer in gas jet quenching of a cylinder. Int. J. Numer. Meth. Heat Fluid Flow 11, 36–49 (2001)

Hinderks, M., Radespiel, R.: Investigation of hypersonic gap flow of a reentry nosecap with consideration of fluid structure interaction. AIAA Paper 06–1111 (2006)

Huebner K.H., Dewhirst D.L., Smith D.E., Byrom T.G.: The Finite Element Methods for Engineers. John Wiley & Sons, New York (2001)

Lior N.: The cooling process in gas quenching. J. Mater. Process. Technol. 155(156), 1881–1888 (2004)

Massjung R.: Discrete conservation and coupling strategies in nonlinear aeroelasticity. Comput. Meth. Appl. Mech. Engrg. 196(1–3), 91–102 (2006)

Matthies H.G., Niekamp R., Steindorf J.: Algorithms for strong coupling procedures. Comput. Meth. Appl. Mech. Engrg. 195, 2028–2049 (2006)

Mehta, R.C.: Numerical computation of heat transfer on reentry capsules at mach 5. AIAA-Paper 2005–178 (2005)

Meister A., Sonar T.: Finite-volume schemes for compressible fluid flow. Surv. Math. Ind. 8, 1–36 (1998)

Quarteroni A., Valli A.: Domain Decomposition Methods for Partial Differential Equations. Oxford Science Publications, Oxford (1999)

Saba, B., Steinhoff, K.: Massivumformprodukte mit funktional gradierten Eigenschaften durch eine differenzielle thermo-mechanische Prozessführung. WT-Online pp. 745–752 (2007)

Schüttenberg S., Hunkel M., Fritsching U., Zoch H.W.: Controlling of distortion by means of quenching in adapted jet fields. Materialwiss. Werkstofftech. 37, 92–96 (2006)

Stratton P., Shedletsky I., Lee M.: Gas quenching with helium. Solid State Phenom. 118, 221–226 (2006)

Van Driest, E.: National Advisory Commitee for Aeronautics (NACA)—investigation of laminar boundary layer in compressible fluids using the crocco method. NACA (1952)

van Zuijlen A.H., Bijl H.: Implicit and explicit higher order time integration schemes for structural dynamics and fluid-structure interaction computations. Comput. Struct. 83, 93–105 (2005)

van Zuijlen A.H., de Boer A., Bijl H.: Higher-order time integration through smooth mesh deformation for 3d fluid-structure interaction simulations. J. Comput. Phys. 224, 414–430 (2007)

Wada, Y., Liou, M.S.: A flux splitting scheme with high-resolution and robustness for discontinuities. AIAA Paper 94–0083 (1994)

Yarrington, P.W., Thornton, E.A.: Finite element analysis of low-speed compressible flows within convectively cooled structures. J. Thermophys. Heat Transf. 8–4, 678–686 (1994)