A three-parameter structurally motivated robust constitutive model for isotropic incompressible unfilled and filled rubber-like materials

European Journal of Mechanics - A/Solids - Tập 95 - Trang 104605 - 2022
Afshin Anssari-Benam1, Cornelius O. Horgan2
1Cardiovascular Engineering Research Lab (CERL), School of Mechanical and Design Engineering, University of Portsmouth, Anglesea Road, Portsmouth PO1 3DJ, United Kingdom
2School of Engineering and Applied Science, University Of Virginia, Charlottesville, VA 22904, USA

Tài liệu tham khảo

Anssari-Benam, 2021, On a new class of non-Gaussian molecular based constitutive models with limiting chain extensibility for incompressible rubber-like materials, Math. Mech. Solid, 26, 1660, 10.1177/10812865211001094 Anssari-Benam, 2018, Modelling the deformation of the elastin network in the aortic valve, J. Biomech. Eng., 140, 10.1115/1.4037916 Anssari-Benam, 2021, A generalised neo-Hookean strain energy function for application to the finite deformation of elastomers, Int. J. Non Lin. Mech., 128, 103626, 10.1016/j.ijnonlinmec.2020.103626 Anssari-Benam, 2021, Assessment of a new isotropic hyperelastic constitutive model for a range of rubber-like materials and deformations, Rubber Chem. Technol., 10.5254/rct.21.78975 Anssari-Benam, 2020, Specialized strain energy functions for modelling the contribution of the collagen network (Waniso) to the deformation of soft tissues, J. Appl. Mech., 87, 10.1115/1.4046894 Anssari-Benam, 2021, Modelling the inflation and elastic instabilities of rubber-like spherical and cylindrical shells using a new generalised neo-Hookean strain energy function, J. Elast., 10.1007/s10659-021-09823-x Anssari-Benam, 2021, On the central role of the invariant I2 in nonlinear elasticity, Int. J. Eng. Sci., 163, 103486, 10.1016/j.ijengsci.2021.103486 Anssari-Benam, 2021, On modelling simple shear for isotropic incompressible rubber-like materials, J. Elasticity, 147, 83, 10.1007/s10659-021-09869-x Anssari-Benam, 2022, Extension and torsion of rubber-like hollow and solid circular cylinders for incompressible isotropic hyperelastic materials with limiting chain extensibility, Eur. J. Mech. A Solids, 92, 104443, 10.1016/j.euromechsol.2021.104443 Anssari-Benam, 2022, Torsional instability of incompressible hyperelastic rubber-like solid circular cylinders with limiting chain extensibility, Int. J. Solid Struct., 238, 111396, 10.1016/j.ijsolstr.2021.111396 Anssari-Benam, 2022, New results in the theory of plane strain flexure of incompressible isotropic hyperelastic materials, Proc. R. Soc. A, 478, 20210773, 10.1098/rspa.2021.0773 Araújo, 2020, Experimental study of the Poynting effect in a soft unidirectional fiber-reinforced material under simple shear, Soft Matter, 16, 7950, 10.1039/D0SM00745E Beatty, 1987, Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues - with examples, Appl. Mech. Rev., 40, 1699, 10.1115/1.3149545 Beatty, 2008, On constitutive models for limited elastic, molecular based materials, Math. Mech. Solid, 13, 375, 10.1177/1081286507076405 Budday, 2020, Fifty shades of brain: a review on the mechanical testing and modeling of brain tissue, Arch. Comput. Methods Eng., 27, 1187, 10.1007/s11831-019-09352-w Budday, 2020, Towards microstructure-informed material models for human brain tissue, Acta Biomater., 104, 53, 10.1016/j.actbio.2019.12.030 Carroll, 2011, A strain energy function for vulcanized rubbers, J. Elasticity, 103, 173, 10.1007/s10659-010-9279-0 Dal, 2021, On the performance of isotropic hyperelastic constitutive models for rubber-like materials: a state of the art review, Appl. Mech. Rev., 73, 10.1115/1.4050978 Davidson, 2013, A nonaffine network model for elastomers undergoing finite deformations, J. Mech. Phys. Solid., 61, 1784, 10.1016/j.jmps.2013.03.009 Destrade, 2015, Extreme softness of brain matter in simple shear, Int. J. Non Lin. Mech., 75, 54, 10.1016/j.ijnonlinmec.2015.02.014 Destrade, 2017, Methodical fitting for mathematical models of rubber-like materials, Proc. R. Soc. A, 473, 20160811, 10.1098/rspa.2016.0811 Gent, 1996, A new constitutive relation for rubber, Rubber Chem. Technol., 69, 59, 10.5254/1.3538357 Horgan, 2021, A note on a class of generalized neo-Hookean models for isotropic incompressible hyperelastic materials, Int. J. Non Lin. Mech., 129, 103665, 10.1016/j.ijnonlinmec.2020.103665 Horgan, 1999, Simple torsion of isotropic, hyperelastic, incompressible materials with limiting chain extensibility, J. Elasticity, 56, 159, 10.1023/A:1007606909163 Horgan, 2002, A molecular-statistical basis for the Gent constitutive model of rubber elasticity, J. Elasticity, 68, 167, 10.1023/A:1026029111723 Horgan, 2012, The importance of the second strain invariant in the constitutive modeling of elastomers and soft biomaterials, Mech. Mater., 51, 43, 10.1016/j.mechmat.2012.03.007 Kaliske, 1999, An extended tube-model for rubber elasticity: statistical-mechanical theory and finite element implementation, Rubber Chem. Technol., 72, 602, 10.5254/1.3538822 Kawabata, 1981, Experimental survey of the strain energy density function of isoprene rubber vulcanizate, Macromolecules, 14, 154, 10.1021/ma50002a032 Lahellec, 2004, Second-order estimate of the macroscopic behavior of periodic hyperelastic composites: theory and experimental validation, J. Mech. Phys. Solid., 52, 27, 10.1016/S0022-5096(03)00104-2 Lopez-Pamies, 2010, A new I1 -based hyperelastic model for rubber elastic materials, C. R. Mecanique, 338, 3, 10.1016/j.crme.2009.12.007 Marckmann, 2006, Comparison of hyperelastic models for rubber-like materials, Rubber Chem. Technol., 79, 835, 10.5254/1.3547969 Miehe, 2004, A micro-macro approach to rubber-like materials-Part I: the non-affine micro-sphere model of rubber elasticity, J. Mech. Phys. Solid., 52, 2617, 10.1016/j.jmps.2004.03.011 Mihai, 2015, A comparison of hyperelastic constitutive models applicable to brain and fat tissues, J. R. Soc. Interface, 12, 20150486, 10.1098/rsif.2015.0486 Moreira, 2013, Comparison of simple and pure shear for an incompressible isotropic hyperelastic material under large deformation, Polym. Test., 32, 240, 10.1016/j.polymertesting.2012.11.005 Nunes, 2011, Mechanical characterization of hyperelastic polydimethylsiloxane by simple shear test, Mater. Sci. Eng., A, 528, 1799, 10.1016/j.msea.2010.11.025 Nunes, 2013, Simple shear under large deformation: experimental and theoretical analyses, Eur. J. Mech. A Solids, 42, 315, 10.1016/j.euromechsol.2013.07.002 Ogden, 1972, Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids, Proc. Roy. Soc. Lond. A, 326, 565, 10.1098/rspa.1972.0026 Ogden, 2004, Fitting hyperelastic models to experimental data, Comput. Mech., 34, 484, 10.1007/s00466-004-0593-y Pucci, 2002, A note on the Gent model for rubber-like materials, Rubber Chem. Technol., 75, 839, 10.5254/1.3547687 Puglisi, 2016, Multi-scale modelling of rubber-like materials and soft tissues: an appraisal, Proc. R. Soc. A, 472, 20160060, 10.1098/rspa.2016.0060 Saccomandi, 2001, Universal results in finite elasticity, 97 Treloar, 1944, Stress-strain data for vulcanised rubber under various types of deformation, Trans. Faraday Soc., 40, 59, 10.1039/tf9444000059 Wineman, 2005, Some results for generalized neo-Hookean elastic materials, Int. J. Non Lin. Mech., 40, 271, 10.1016/j.ijnonlinmec.2004.05.007 Yeoh, 1993, Some forms of the strain energy function for rubber, Rubber Chem. Technol., 66, 754, 10.5254/1.3538343 Yeoh, 1997, Hyperelastic material models for finite element analysis of rubber, J. Nat. Rubber Res., 12, 142