A three-parameter structurally motivated robust constitutive model for isotropic incompressible unfilled and filled rubber-like materials
Tài liệu tham khảo
Anssari-Benam, 2021, On a new class of non-Gaussian molecular based constitutive models with limiting chain extensibility for incompressible rubber-like materials, Math. Mech. Solid, 26, 1660, 10.1177/10812865211001094
Anssari-Benam, 2018, Modelling the deformation of the elastin network in the aortic valve, J. Biomech. Eng., 140, 10.1115/1.4037916
Anssari-Benam, 2021, A generalised neo-Hookean strain energy function for application to the finite deformation of elastomers, Int. J. Non Lin. Mech., 128, 103626, 10.1016/j.ijnonlinmec.2020.103626
Anssari-Benam, 2021, Assessment of a new isotropic hyperelastic constitutive model for a range of rubber-like materials and deformations, Rubber Chem. Technol., 10.5254/rct.21.78975
Anssari-Benam, 2020, Specialized strain energy functions for modelling the contribution of the collagen network (Waniso) to the deformation of soft tissues, J. Appl. Mech., 87, 10.1115/1.4046894
Anssari-Benam, 2021, Modelling the inflation and elastic instabilities of rubber-like spherical and cylindrical shells using a new generalised neo-Hookean strain energy function, J. Elast., 10.1007/s10659-021-09823-x
Anssari-Benam, 2021, On the central role of the invariant I2 in nonlinear elasticity, Int. J. Eng. Sci., 163, 103486, 10.1016/j.ijengsci.2021.103486
Anssari-Benam, 2021, On modelling simple shear for isotropic incompressible rubber-like materials, J. Elasticity, 147, 83, 10.1007/s10659-021-09869-x
Anssari-Benam, 2022, Extension and torsion of rubber-like hollow and solid circular cylinders for incompressible isotropic hyperelastic materials with limiting chain extensibility, Eur. J. Mech. A Solids, 92, 104443, 10.1016/j.euromechsol.2021.104443
Anssari-Benam, 2022, Torsional instability of incompressible hyperelastic rubber-like solid circular cylinders with limiting chain extensibility, Int. J. Solid Struct., 238, 111396, 10.1016/j.ijsolstr.2021.111396
Anssari-Benam, 2022, New results in the theory of plane strain flexure of incompressible isotropic hyperelastic materials, Proc. R. Soc. A, 478, 20210773, 10.1098/rspa.2021.0773
Araújo, 2020, Experimental study of the Poynting effect in a soft unidirectional fiber-reinforced material under simple shear, Soft Matter, 16, 7950, 10.1039/D0SM00745E
Beatty, 1987, Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues - with examples, Appl. Mech. Rev., 40, 1699, 10.1115/1.3149545
Beatty, 2008, On constitutive models for limited elastic, molecular based materials, Math. Mech. Solid, 13, 375, 10.1177/1081286507076405
Budday, 2020, Fifty shades of brain: a review on the mechanical testing and modeling of brain tissue, Arch. Comput. Methods Eng., 27, 1187, 10.1007/s11831-019-09352-w
Budday, 2020, Towards microstructure-informed material models for human brain tissue, Acta Biomater., 104, 53, 10.1016/j.actbio.2019.12.030
Carroll, 2011, A strain energy function for vulcanized rubbers, J. Elasticity, 103, 173, 10.1007/s10659-010-9279-0
Dal, 2021, On the performance of isotropic hyperelastic constitutive models for rubber-like materials: a state of the art review, Appl. Mech. Rev., 73, 10.1115/1.4050978
Davidson, 2013, A nonaffine network model for elastomers undergoing finite deformations, J. Mech. Phys. Solid., 61, 1784, 10.1016/j.jmps.2013.03.009
Destrade, 2015, Extreme softness of brain matter in simple shear, Int. J. Non Lin. Mech., 75, 54, 10.1016/j.ijnonlinmec.2015.02.014
Destrade, 2017, Methodical fitting for mathematical models of rubber-like materials, Proc. R. Soc. A, 473, 20160811, 10.1098/rspa.2016.0811
Gent, 1996, A new constitutive relation for rubber, Rubber Chem. Technol., 69, 59, 10.5254/1.3538357
Horgan, 2021, A note on a class of generalized neo-Hookean models for isotropic incompressible hyperelastic materials, Int. J. Non Lin. Mech., 129, 103665, 10.1016/j.ijnonlinmec.2020.103665
Horgan, 1999, Simple torsion of isotropic, hyperelastic, incompressible materials with limiting chain extensibility, J. Elasticity, 56, 159, 10.1023/A:1007606909163
Horgan, 2002, A molecular-statistical basis for the Gent constitutive model of rubber elasticity, J. Elasticity, 68, 167, 10.1023/A:1026029111723
Horgan, 2012, The importance of the second strain invariant in the constitutive modeling of elastomers and soft biomaterials, Mech. Mater., 51, 43, 10.1016/j.mechmat.2012.03.007
Kaliske, 1999, An extended tube-model for rubber elasticity: statistical-mechanical theory and finite element implementation, Rubber Chem. Technol., 72, 602, 10.5254/1.3538822
Kawabata, 1981, Experimental survey of the strain energy density function of isoprene rubber vulcanizate, Macromolecules, 14, 154, 10.1021/ma50002a032
Lahellec, 2004, Second-order estimate of the macroscopic behavior of periodic hyperelastic composites: theory and experimental validation, J. Mech. Phys. Solid., 52, 27, 10.1016/S0022-5096(03)00104-2
Lopez-Pamies, 2010, A new I1 -based hyperelastic model for rubber elastic materials, C. R. Mecanique, 338, 3, 10.1016/j.crme.2009.12.007
Marckmann, 2006, Comparison of hyperelastic models for rubber-like materials, Rubber Chem. Technol., 79, 835, 10.5254/1.3547969
Miehe, 2004, A micro-macro approach to rubber-like materials-Part I: the non-affine micro-sphere model of rubber elasticity, J. Mech. Phys. Solid., 52, 2617, 10.1016/j.jmps.2004.03.011
Mihai, 2015, A comparison of hyperelastic constitutive models applicable to brain and fat tissues, J. R. Soc. Interface, 12, 20150486, 10.1098/rsif.2015.0486
Moreira, 2013, Comparison of simple and pure shear for an incompressible isotropic hyperelastic material under large deformation, Polym. Test., 32, 240, 10.1016/j.polymertesting.2012.11.005
Nunes, 2011, Mechanical characterization of hyperelastic polydimethylsiloxane by simple shear test, Mater. Sci. Eng., A, 528, 1799, 10.1016/j.msea.2010.11.025
Nunes, 2013, Simple shear under large deformation: experimental and theoretical analyses, Eur. J. Mech. A Solids, 42, 315, 10.1016/j.euromechsol.2013.07.002
Ogden, 1972, Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids, Proc. Roy. Soc. Lond. A, 326, 565, 10.1098/rspa.1972.0026
Ogden, 2004, Fitting hyperelastic models to experimental data, Comput. Mech., 34, 484, 10.1007/s00466-004-0593-y
Pucci, 2002, A note on the Gent model for rubber-like materials, Rubber Chem. Technol., 75, 839, 10.5254/1.3547687
Puglisi, 2016, Multi-scale modelling of rubber-like materials and soft tissues: an appraisal, Proc. R. Soc. A, 472, 20160060, 10.1098/rspa.2016.0060
Saccomandi, 2001, Universal results in finite elasticity, 97
Treloar, 1944, Stress-strain data for vulcanised rubber under various types of deformation, Trans. Faraday Soc., 40, 59, 10.1039/tf9444000059
Wineman, 2005, Some results for generalized neo-Hookean elastic materials, Int. J. Non Lin. Mech., 40, 271, 10.1016/j.ijnonlinmec.2004.05.007
Yeoh, 1993, Some forms of the strain energy function for rubber, Rubber Chem. Technol., 66, 754, 10.5254/1.3538343
Yeoh, 1997, Hyperelastic material models for finite element analysis of rubber, J. Nat. Rubber Res., 12, 142