A three‐dimensional rotating rigid units network exhibiting negative Poisson's ratios

Physica Status Solidi (B): Basic Research - Tập 249 Số 7 - Trang 1330-1338 - 2012
Daphne Attard1, Joseph N. Grima1,2
1Faculty of Science, Department of Chemistry, University of Malta, Msida Malta, MSD 2080, Malta
2Faculty of Science, Metamaterials Unit, University of Malta, Msida Malta, MSD 2080, Malta

Tóm tắt

AbstractMaterials exhibiting auxetic behaviour get fatter when stretched (i.e. possess a negative Poisson's ratio). This property has been closely related to particular geometrical features of a system and how it deforms. One of the mechanisms which is known to have a potential to generate such behaviour is that of rotating rigid units. Several models based on this concept have been developed, including two‐dimensional as well as three‐dimensional (3D) models. In this work, we propose a new 3D structure constructed from rigid cuboids which also deform through relative rotation of the units. In particular, analytical models for the mechanical properties, namely the Poisson's ratio and the Young's moduli, are derived and it is shown that for loading on‐axis, these systems have the potential to exhibit negative values for all the six on‐axis Poisson's ratios.

Từ khóa


Tài liệu tham khảo

10.1038/353124a0

10.1126/science.235.4792.1038

10.1177/0021955X9803400304

10.1016/0956-7151(94)90304-2

10.1023/A:1004830103411

Smith C. W., 1999, Cell. Polym., 18, 79

10.1021/ie990572w

10.1016/S0958-2118(01)80299-8

10.1002/aic.690471125

Chen C. P., 1989, Cell. Polym., 8, 343, 10.1177/026248938900800501

10.1115/1.2806807

Howell B., 1991, Acoustic Behaviour of Negative Poisson's Ratio Materials

10.1006/jsvi.1999.2600

10.1088/0964-1726/13/1/006

10.1243/095440604322887099

10.1098/rspa.1982.0087

10.1016/S0263-8223(96)00054-2

10.1016/j.compscitech.2010.02.027

10.1126/science.257.5070.650

10.1038/358222a0

10.1103/PhysRevB.48.16227

10.1103/PhysRevLett.84.5548

10.1007/s002690100209

10.1103/PhysRevLett.89.225503

10.1088/0953-8984/21/2/025401

10.1039/b508098c

10.1016/j.msea.2005.08.230

10.1002/1521-4095(200012)12:24<1912::AID-ADMA1912>3.0.CO;2-7

10.1063/1.2718879

10.1007/s10853-008-2765-0

10.1016/j.actamat.2007.06.011

10.1016/0956-7151(94)90145-7

10.1039/ft9959102671

10.1016/0020-7403(94)00047-N

10.1016/j.compstruct.2005.09.035

10.1016/0167-6636(94)00069-7

10.12921/cmst.2004.10.02.117-126

10.1023/A:1006781224002

10.1002/pssb.200460376

10.1002/pssb.200572706

10.1016/0375-9601(89)90971-7

10.1002/pssb.200460381

10.1002/pssb.200572721

10.1088/0305-4470/36/47/005

10.1103/PhysRevE.67.036121

10.1002/pssb.200880268

10.1134/1.1131137

10.1038/354470a0

Wojciechowski K. W., 1994, Mol. Phys. Rep., 6, 71

10.1002/pssb.200777708

10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3

J. N.Grima New Auxetic Materials Ph.D. dissertation University of Exeter (2000).

Alderson A., 1999, Chem. Ind., 384

10.1103/PhysRevLett.93.015505

10.1016/S0020-7403(96)00025-2

10.1002/pssb.200777704

10.1143/JPSJ.74.1341

10.1016/j.scriptamat.2008.10.013

10.1016/j.jnoncrysol.2008.06.081

10.1021/cm062473w

10.1007/s10853-010-4846-0