A thermodynamically consistent mesoscopic model for transversely isotropic ferroelectric ceramics in a coordinate-invariant setting

Archive of Applied Mechanics - Tập 74 - Trang 863-877 - 2005
J. Schröder1, H. Romanowski1
1Institut für Mechanik, Fachbereich Bauwissenschaften, Universität Duisburg-Essen, Essen, Germany

Tóm tắt

In this contribution we present a phenomenological mesoscopic thermodynamically consistent model for the description of switching processes in ferroelectric materials that is able to describe the fundamental electromechanical hysteresis effects. The main goal is to develop a representation using the set of independent variables, the strains and the electric field, in a coordinate-invariant setting. This formulation is particularly suitable for the treatment of a variety of complex boundary-value problems (BVP) with regard to the essential boundary conditions. Here we restrict ourselves to transversely isotropic solids. The anisotropic behavior is governed by isotropic tensor functions that depend on a finite set of invariants. Thus the material symmetry requirements are automatically fulfilled.

Tài liệu tham khảo

Bassiouny, E., Ghaleb, A.F., Maugin, G.A.: Thermodynamical formulation for coupled electromechanical hysteresis effects. I. Basic equations. Int J Eng Sci 26, 1279–1295 (1988) Bassiouny, E., Ghaleb, A.F., Maugin, G.A.: Thermodynamical formulation for coupled electromechanical hysteresis effects. II. Poling of ceramics. Int J Eng Sci 26, 1297–1306 (1988) Bassiouny, E., Maugin, G.A.: Thermodynamical formulation for coupled electromechanical hysteresis effects. III. Parameter identification. Int J Eng Sci 27, 975–987 (1989) Bassiouny, E., Maugin, G.A.: Thermodynamical formulation for coupled electromechanical hysteresis effects. IV. Combined electromechanical loading. Int J Eng Sci 27, 989–1000 (1989) Boehler, J.P.: Introduction to the invariant formulation of anisotropic constitutive equations. In: Boehler, J.P. (ed.) Applications of tensor functions in solid mechanics. CISM Course no. 292. Springer, Berlin Heidelberg New York (1987) Boehler, J.P.: Representations for isotropic and anisotropic non-polynominal tensor functions. In: Boehler, J.P. (ed.) Applications of Tensor Functions in Solid Mechanics. CISM Course no. 292. Springer, Berlin Heidelberg New York (1987) Chen, P.J., Montgomery, S.T.: A macroscopic theory for the existence of the hysteresis and butterfly loops in ferroelectricity. Ferroelectrics 23, 199–208 (1980) Chen, P.J., Tucker, T.J.: One dimensional polar mechanical and dielectric responses of the ferroelectric ceramic PZT 65/35 due to domain switching. Int J Eng Sci 19, 147–158 (1981) Cocks, A.C.F., McMeeking, R.M.: A phenomenological constitutive law for the behavior of ferroelectric ceramics. Ferroelectrics 228, 219–228 (1999) Eringen, A.C., Maugin, G.A.: Electrodynamics of Continua. Vol. 1, Foundations and Solid Media. Springer, Berlin Heidelberg New York (1990) Eringen, A.C., Maugin, G.A.: Electrodynamics of Continua. Vol. 2, Fluid and Complex Media. Springer, Berlin Heidelberg New York (1990) Hwang, S.C., Lynch, C.S., McMeeking, R.M.: Ferroelectric/ferroelastic interactions and a polarization switching model. Acta Metallurg Material 43, 2073–2084 (1995) Hwang, S.C., McMeeking R.: The prediction of switching in polycrystalline ferroelectric ceramics. Ferroelectrics 207, 465–495 (1998) Hwang, S.C., McMeeking R.: A finite element model of ferroelectric polycrystals. Ferroelectrics 211, 177–194 (1998) Hwang, S.C., McMeeking R.: A finite element model of ferroelastic polycrystals. Int J Solids Struct 36, 1541–1556 (1999) Jaffe, B., Cook, W.R., Jaffe, H.: Piezoelectric Ceramics. Academic, London (1971) Kamlah, M., Tsakmakis, C.: Phenomenological modelling of the non-linear electro-mechanical coupling in ferroelectrics. Int J Solids Struct 36, 669–695 (1999) Kamlah, M., Böhle, U.: Finite element analysis of piezoceramic components taking into account ferroelectric hysteresis behavior. Int J Solids Struct 38, 605–633 (2001) Kamlah, M.: Ferroelectric and ferroelastic piezoceramics–-modeling of electromechanical hysteresis phenomena. Continuum Mech Thermodyn 13, 219–268 (2001) Kamlah, M., Wang, Z.: A thermodynamically and microscopically motivated constitutive model for piezoceramics. Comput Mat Sci 28, 409–418 (2003) Landis, C.M.: Fully coupled, multi-axial, symmetric constitutive laws for polycrystalline ferroelectric ceramics. J Mech Phys Solids 50, 127–152 (2002) Landis, C.M.: A new finite-element formulation for electromechanical boundary value problems. Int J Numer Methods Eng 55, 613–628 (2002) Lemaitre, J., Chaboche J.-L.: Mechanics of solid materials. Cambridge University Press, Cambridge (1990) Liu, I-Shih: On representations of anisotropic invariants. Int J Eng Sci 20, 1099–1109 (1982) Luenberger, D.G.: Linear and nonlinear programming. Addison-Wesley, Reading, MA (1984) Lupascu, D.C., Rödel, J.: Fatigue in bulk lead zirconate actuator materials: a review. Report des Institutes Nictqtmetalliscq-Auorganiscqe Werkstoffe der TV-Darmstadt (2004) Lynch, C.S.: On the development of multiaxial phenomenological constitutive laws for ferroelectric ceramics. J Intell Mat Syst Struct 9, 555–563 (1998) McMeeking, R.M., Landis, C.M.: A phenomenological multi-axial constitutive law for switching in polycrystalline ferroelectric ceramics. Int J Eng Sci 40, 1553–1577 (2002) Mielke, A., Timofte, A.M.: An energetic material model for time-dependent ferroelectric behavior: existence and uniqueness. WIAS Preprint No. 1014 (2005) Nowacki, W.: Foundations of linear piezoelectricity. In: Parkus, H. (ed.) Electromagnetic Interactions in Elastic Solids. CISM course no. 257. Springer, Berlin Heidelberg New York (1979) Schröder, J., Gross, D.: Invariant formulation of the electromechanical enthalpy function of transversely isotropic piezoelectric materials. Arch Appl Mech 73, 533–552 (2004) Smith, G.F.: On a fundamental error in two papers of C.C. Wang. Arch Rat Mech Anal 36, 161–165 (1970) Smith, G.F.: On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Int J Eng Sci 19, 899–916 (1971) Spencer, A.J.M.: Theory of invariants. In: Eringen, A.C. (ed.) Continuum Physics, Vol. 1. Academic, New York (1971) Spencer, A.J.M.: Isotropic polynomial invariants and tensor functions. In: Boehler, J.P. (ed.) Applications of Tensor Functions in Solid Mechanics. CISM course no. 282. Springer, Berlin Heidelberg New York (1987) Wang, C.C.: On representations for isotropic functions: Part I. Isotropic functions of symmetric tensors and vectors. Arch Rat Mech Anal 33, 249–267 (1969) Wang, C.C.: On representations for isotropic functions: Part II. Isotropic functions of skew-symmetric tensors, symmetric tensors and vectors. Arch Rat Mech Anal 33, 268–287 (1969) Zheludev, I.S.: Physics of Polycrystalline Dielectrics. Vol. 2, Electrical Properties. Plenum, New York (1971)