A “theory” of optical flow
Tài liệu tham khảo
Koenderink, 1975, Invariant properties of the motion parallax field due to the movement of rigid bodies relative to an observer, Optica Acta, 22, 773, 10.1080/713819112
Koenderink, 1976, Local structure of movement parallax of the plane, J. Opt. Soc. Amer., 66, 717, 10.1364/JOSA.66.000717
Koenderink, 1980, Exterospecific component of the motion parallax field, J. Opt. Soc. Amer., 71, 953, 10.1364/JOSA.71.000953
Longuet-Higgins, 1980, The interpretation of a moving retinal image, 208, 385
Horn, 1981, Determining optical flow, Artificial Intelligence, 17, 185, 10.1016/0004-3702(81)90024-2
Waxman, 1983, Surface Structure and 3-D Motion from Image Flow: A Kinematic Analysis
Waxman, 1984, Contour Evolution, Neighbourhood Deformation and Global Image Flow: Planar Surfaces in Motion
Waxman, 1985, Internat. J. Robotics Res., 4, 72, 10.1177/027836498500400306
Adiv, 1984, Determining 3-D Motion and Structure from Optical Flow
Subbarao, 1986, Closed form solutions to image flow equations for planar surfaces in motion, Comput. Vision Graphics Image Process., 36, 208, 10.1016/0734-189X(86)90076-9
Tsai, 1981, Estimating 3-D motion parameters of a rigid planar patch, IEEE Trans. Acoust. Speech Signal Process., ASSP-29, 10.1109/TASSP.1981.1163710
Tsai, 1984, Estimating 3-D motion parameters of a rigid planar patch. III. Finite point correspondences and the threeview problem, IEEE Trans. Acoust. Speech Signal Process., AASP-32
Tsai, 1982, Estimating 3-D motion parameters of a rigid planar patch. II. Singular value decomposition, IEEE Trans. Acoust. Speech Signal Process., ASSP-30, 10.1109/TASSP.1982.1163931
Hildreth, 1983, The Measurement of Visual Motion
Hildreth, 1984, Computations underlying the measurement of visual motion, Artificial Intelligence, 23, 309, 10.1016/0004-3702(84)90018-3
Kanatani, 1985, Structure from motion without correspondence: General principle, 107
Bruss, 1983, Passive navigation, Comput. Vision Graphics Image Process., 21, 3, 10.1016/S0734-189X(83)80026-7
Horn, 1987, Motion fields are hardly ever ambiguous, Internat. J. Comput. Vision, 1, 263
Bergholm, 1987, Motion from Flow along Contours—A Note on Robustness and Ambiguous Cases
Bergholm, 1987, Global Structure of Velocity Fields and the Aperture Problem in the Large
Carlsson, 1987, Global structure of the velocity field of a moving plane
Bergholm, 1988, Motion from flow along contours: A note on robustness and ambiguous cases, Internat. J. Comput. Vision, 2, 10.1007/BF00133557
Golub, 1983
Marr, 1982
Bergholm, 1989, On the Content of Information in Edges and Optical Flow
Lie, 1893, Vorlesungen über Continuerliche Gruppen
Wu, 1987, Motion Estimation from Image Sequences
Waxman, 1986, Image Flow Theory: A Framework for 3-D Inference from Time-Varying Imagery, Boston University, Lab. for Sensory Robotics, Tech. Report 1
Waxman, 1987
Svensson, 1987, Estimating the N-dimensional motion of a (N − 1)-dimensional hyperplane from two matched images of (N + 1) of its points
Scott, 1986, Smoothing the optic flow field under perspective projection, 504
Carlsson, 1988, Information in the geometric structure of retinal flow fields, 629
Adiv, 1985, Inherent ambiguities in recovering 3-D motion and structure from a noisy flow field, 70
Nelson, 1988, Visual Navigation
Dahlquist, 1974
Heeger, 1987, Optical flow from spatiotemporal filters, 181
O'Neill, 1966
