A theoretical study of H- and I-abstraction reactions from CH3I molecule by I (2P3/2) atom and IO radical
Tài liệu tham khảo
R.E. Tapscott, S.R. Skaggs, D. Dierdorf, in: Perfluoroalkyl Iodides and Other New-generation Halon Replacements, Halon Replacements, American Chemical Society, 611, 14, 1997, pp. 151–160.
Solomon, 1994, On the role of iodine in ozone depletion, J. Geophys. Res., 99, 20491, 10.1029/94JD02028
Noto, 1996, Effect of halogenated flame inhibitors on C1–C2 organic flames, Symp. (Int.) Combust., 26, 1377, 10.1016/S0082-0784(96)80357-2
Gilles, 1996, Reactions of O (3P) with alkyl iodides: rate coefficients and reaction products, J. Phys. Chem., 100, 14005, 10.1021/jp960688v
Misra, 1997, Potential energy surfaces for the reaction of O atoms with CH3I: implications for thermochemistry and kinetics, J. Phys. Chem. A, 101, 7420, 10.1021/jp971337z
Canneaux, 2010, Theoretical study of the gas-phase reactions of iodine atoms (2P3/2) with H2, H2O, HI, and OH, J. Phys. Chem. A, 114, 9270, 10.1021/jp104163t
Hammaecher, 2011, A theoretical study of the H-abstraction reactions from HOI by moist air radiolytic products (H, OH, and O (3P)) and iodine atoms (2P3/2), J. Phys. Chem. A, 115, 6664, 10.1021/jp202760u
Xerri, 2012, Ab initio calculations and iodine kinetic modeling in the reactor coolant system of a pressurized water reactor in case of severe nuclear accident, Comput. Theor. Chem., 990, 194, 10.1016/j.comptc.2012.02.024
Mečiarová, 2011, A theoretical study of the kinetics of the forward and reverse reactions HI+CH3=I+CH4, Chem. Phys. Lett., 517, 149, 10.1016/j.cplett.2011.10.029
Canneaux, 2012, Theoretical study of H-abstraction reactions from CH3Cl and CH3Br molecules by ClO and BrO radicals, J. Phys. Chem. A, 116, 4396, 10.1021/jp301557c
Sullivan, 1961, The thermal reactions of hydrogen iodide with alkyl iodides, J. Phys. Chem., 65, 722, 10.1021/j100823a005
Benson, 1961, Kinetics of the reactions of alkyl iodides with HI, J. Chem. Phys., 34, 514, 10.1063/1.1700976
Flowers, 1963, Kinetics of the gas-phase reaction of CH3I with HI, J. Chem. Phys., 38, 882, 10.1063/1.1733777
Kassman, 1969, Homogeneous exchange of iodine with methyl iodide in the single-pulse shock tube, J. Am. Chem. Soc., 91, 6237, 10.1021/ja01051a007
Skorobogatov, 1994, Equilibrium and rate constants of the reactions CX3I=CX3+I and CX3I+I=I2+CX3 (X=H, D) in the temperature range 300–800 K, Russ. J. Gen. Chem., 64, 860
Ogg, 1934, Kinetics of the thermal reaction of gaseous alkyl iodides with hydrogen iodide, J. Am. Chem. Soc., 56, 526, 10.1021/ja01318a007
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, in: Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford, CT, 2004.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. zmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.02, Gaussian 09, Revision A.02; Gaussian, Inc., Wallingford, CT, 2009.
Møller, 1934, Note on an approximation treatment for many-electron systems, Phys. Rev., 46, 618, 10.1103/PhysRev.46.618
Dunning, 1989, Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, J. Chem. Phys., 90, 1007, 10.1063/1.456153
Peterson, 2006, On the spectroscopic and thermochemical properties of ClO, BrO, IO, and their anions, J. Phys. Chem. A, 110, 13877, 10.1021/jp065887l
Gonzalez, 1989, An improved algorithm for reaction path following, J. Chem. Phys., 90, 2154, 10.1063/1.456010
Gonzalez, 1990, Reaction path following in mass-weighted internal coordinates, J. Phys. Chem., 94, 5523, 10.1021/j100377a021
NIST, Computational Chemistry Comparison and Benchmark Database, in: R.D. Johnson, III (Ed.), NIST Standard Reference Database Number 101, Release 15 (February 2010).
Cizek, 1969, Use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules, Adv. Chem. Phys., 14, 35, 10.1002/9780470143599.ch2
Purvis, 1982, A full coupled-cluster singles and doubles model: the inclusion of disconnected triples, J. Chem. Phys., 76, 1910, 10.1063/1.443164
Scuseria, 1988, An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations, J. Chem. Phys., 89, 7382, 10.1063/1.455269
Scuseria, 1989, Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)?, J. Chem. Phys., 90, 3700, 10.1063/1.455827
Pople, 1987, Quadratic configuration interaction. A general technique for determining electron correlation energies, J. Chem. Phys., 87, 5968, 10.1063/1.453520
Halkier, 1998, Basis-set convergence in correlated calculations on Ne, N2, and H2O, Chem. Phys. Lett., 286, 243, 10.1016/S0009-2614(98)00111-0
Lee, 1999, Exploring the spin–orbit reactivity in the simplest chlorine atom reaction, J. Chem. Phys., 111, 6253, 10.1063/1.479930
Jasper, 2010, The effect of spin–orbit splitting on the association kinetics of barrierless halogen atom–hydrocarbon radical reactions, J. Phys. Chem. A, 114, 5759, 10.1021/jp1015092
C.E. Moore, Atomic Energy Levels, NSRDS-NBS 35; USGPO: Washington, DC, vols. I and II, 1971.
Gilles, 1991, Photoelectron spectroscopy of IO−, J. Chem. Phys., 95, 4723, 10.1063/1.461746
Feller, 2003, Performance of coupled cluster theory in thermochemical calculations of small halogenated compounds, J. Chem. Phys., 118, 3510, 10.1063/1.1532314
Shepler, 2005, Ab initio thermochemistry involving heavy atoms: an investigation of the reactions Hg+IX (X=I, Br, Cl, O), J. Phys. Chem. A, 109, 10363, 10.1021/jp0541617
Stevens, 1998, An ab initio investigation of spin-allowed and spin-forbidden pathways of the gas phase reactions of O (3P)+C2H5, J. Chem. Phys., 108, 1544, 10.1063/1.475525
Grant, 2010, Thermodynamic properties of the XO2, X2O, XYO, X2O2, and XYO2 (X, Y=Cl, Br, and I) isomers, J. Phys. Chem. A, 114, 4254, 10.1021/jp911320p
Eyring, 1935, The activated complex in chemical reactions, J. Chem. Phys., 3, 107, 10.1063/1.1749604
Johnston, 1966
Laidler, 1969
Weston, 1972
Rapp, 1972
Nikitin, 1974
Smith, 1980
Steinfeld, 1989
Pfaendtner, 2007, The 1-D hindered rotor approximation, Theor. Chem. Acc., 118, 881, 10.1007/s00214-007-0376-5
Yu, 2008, Ab initio study of acrylate polymerization reactions: methyl methacrylate and methyl acrylate propagation, J. Phys. Chem. A, 112, 6772, 10.1021/jp800643a
Yu, 2008, Kinetic study of the copolymerization of methyl methacrylate and methyl acrylate using quantum chemistry, Macromolecules, 41, 8242, 10.1021/ma801241p
Eckart, 1930, The penetration of a potential barrier by electrons, Phys. Rev., 35, 1303, 10.1103/PhysRev.35.1303
Brown, 1981, A method of calculating tunneling corrections for Eckart potential barriers, J. Res. Natl. Bur. Stand. (US), 86, 357, 10.6028/jres.086.014
E. Henon, F. Bohr, S. Canneaux, B. Postat, F. Auge, E. Bouillard, V. Domureau, KISTHEP 1.0, University of Reims Champagne-Ardenne, France, 2003.
Gurvich, 1992
M.W. Chase, NIST-JANAF Thermochemical Tables, J. Phys. Chem. Ref. Data Monograph 9, fourth ed., National Institute of Standards and Technology, Gaithersburg, MD, 1998.
Dooley, 2008, Ion imaging study of IO radical photodissociation: accurate bond dissociation energy determination, Chem. Phys. Lett., 457, 303, 10.1016/j.cplett.2008.04.009
Louis, 2011, Atmospheric reactivity of CH3I and CH2I2 with OH radicals: a comparative study of the H- versus I-abstraction, Comput. Theor. Chem., 965, 275, 10.1016/j.theochem.2010.09.022
S.P. Sander, R.R. Friedl, J.R. Barker, D.M. Golden, M.J. Kurylo, P.H. Wine, J.P.D. Abbatt, J.B. Burkholder, C.E. Kolb, G.K. Moortgat, R.E. Huie, V.L. Orkin, Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 17, JPL-NASA 10-6, 2011, <http://jpldataeval.jpl.nasa.gov>.
Kee, 1989
Marshall, 1997, Computational studies of the reactions of CH3I with H and OH, Chem. Phys. Lett., 265, 48, 10.1016/S0009-2614(96)01400-5