A theoretical evaluation of load transfer in multi-walled carbon nanotubes
Tài liệu tham khảo
Qian, 2000, Load transfer and deformation mechanisms in carbon nanotube–polystyrene composites, Appl Phys Lett, 76, 2868, 10.1063/1.126500
Lourie, 1998, Transmission electron microscopy observations of fracture of single-wall carbon nanotubes under axial tension, Appl Phys Lett, 73, 3527, 10.1063/1.122825
Cooper, 2002, Detachment of nanotubes from a polymer matrix, Appl Phys Lett, 81, 3873, 10.1063/1.1521585
Thostenson, 2002, Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization, J Phys D Appl Phys, 35, 77, 10.1088/0022-3727/35/16/103
Gojny, 2003, Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites, Chem Phys Lett, 370, 820, 10.1016/S0009-2614(03)00187-8
Lu, 2007, A cohesive law for multi-wall carbon nanotubes, Philos Mag, 87, 2221, 10.1080/14786430701344558
Qian, 2003, Load transfer mechanism in carbon nanotube rope, Compos Sci Technol, 63, 1561, 10.1016/S0266-3538(03)00064-2
Girifalco, 2000, Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential, Phys Rev B, 62, 13104, 10.1103/PhysRevB.62.13104
Cox, 1952, The elasticity and strength of paper and other fiberous materials, Br J Appl Phys, 3, 72, 10.1088/0508-3443/3/3/302
Chon, 1980, Stress distributions along a short fibre in fibre reinforced plastics, J Mater Sci, 15, 931, 10.1007/BF00552105
Hutchinson, 1990, Models of fiber debonding and pullout in brittle composites with friction, Mech Mater, 9, 139, 10.1016/0167-6636(90)90037-G
Budiansky, 1995, Fiber-matrix debonding effects on cracking in aligned fiber ceramic composites, Int J Solids Struct, 32, 315, 10.1016/0020-7683(94)00154-O
Chen, 2010, Failure analysis and the optimal toughness design of carbon nanotube-reinforced composites, Compos Sci Technol, 70, 1360, 10.1016/j.compscitech.2010.04.015
Zhang, 2002, The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials, Int J Solids Struct, 39, 3893, 10.1016/S0020-7683(02)00186-5
Jiang, 2003, The effect of nanotube radius on the constitutive model for carbon nanotubes, Comput Mater Sci, 28, 429, 10.1016/j.commatsci.2003.08.004
Arroyo, 2002, An atomistic-based finite deformation membrane for single layer crystalline films, J Mech Phys Solids, 50, 1941, 10.1016/S0022-5096(02)00002-9
Belytschko T, Xiao SP, Schatz GC, Ruoff RS. Atomistic simulations of nanotube fracture. Phys Rev B 2002;65(23):235430/1–8.
Chen, 2008, Mechanics of hydrogen storage in carbon nanotubes, J Mech Phys Solids, 56, 3224, 10.1016/j.jmps.2008.07.007
Liu, 2004, The atomic-scale finite element method, Comput Meth Appl Mech Eng, 193, 1849, 10.1016/j.cma.2003.12.037
Liu B, Jiang H, Huang Y, Qu S, Yu M.-F. Atomic-scale finite element method in multiscale computation with applications to carbon nanotubes. Phys Rev B 2005;72(3):035435/1–8.
Xu, 2008, Condensed multiwalled carbon nanotubes as super fibers, Small, 4, 733, 10.1002/smll.200700678
Banhart, 1996, Carbon onions as nanoscopic pressure cells for diamond formation, Nature, 382, 433, 10.1038/382433a0
Sun, 2006, Carbon nanotubes as high-pressure cylinders and nanoextruders, Science, 312, 1199, 10.1126/science.1124594