A theoretical evaluation of growth yields of yeasts

Cornelis Verduyn1, A. H. Stouthamer2, W. A. Scheffers3, Johannes P. van Dijken3
1Department of Microbiology and Enzymology, Delft University of Technology, The Netherlands
2Department of Microbiology, Biological Laboratory, Free University, Amsterdam, The Netherlands
3Department of Microbiology and Enzymology, Delft University of Technology, Delft, The Netherlands

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aiking H, Sterkenburg A & Tempest DW (1977) Influence of specific growth limitation and dilution rate on the phosphorylation efficiency and cytochrome content of mitochondria ofCandida utilis NCYC 321. Arch. Microbiol. 113: 65?72.

Babel W & Müller RH (1985) Correlation between cell composition and carbon conversion efficiency in microbial growth: a theoretical study. App. Microbiol. Biotechnol. 22: 201?207

Barford JP & Hall RJ (1979) An examination of the Crabtree effect inSaccharomyces cerevisiae: the role of respiratory adaptation. J. Gen. Microbiol. 114: 267?275

Baronofsky JJ, Schreurs WJA & Kashket ER (1984) Uncoupling by acetic acid limits growth of and acetogenesis byClostridium thermoaceticum. Appl. Environ. Microbiol., 48: 1134?1139

Bauchop T & Elsden SR (1960) The growth of micro-organisms in relation to their energy supply. J. Gen. Microbiol. 23: 457?469

Beavis AD (1987a) Upper and lower limits of the charge translocation stoichiometry of mitochondrial electron transport. J. Biol. Chem. 262: 6165?6173

? (1987b) Upper and lower limits of the charge translocation stoichiometry of cytochromec oxidase. J. Biol. Chem. 262: 6174?6181

Beudeker RF, vanDam HW, van derPlaat JB & Vellenga K (1990) Developments in baker's yeast production. In: Verachtert H & DeMot R (Eds) Yeast Biotechnology and Biocatalysis (pp 103?145). Marcel Dekker Inc., New York & Basel

Branden CI, Jornvall H, Eklund H & Furugren B (1975) Alcohol dehydrogenases. In: Boyer PD (Ed) The Enzymes, Vol XI A (pp 103?190) Academic Press, New York

Brown CM & Rose AH (1969) Effects of temperature on composition and cell volume ofCandida utilis. J. Bacteriol. 97: 261?272

Brown GC & Brand MD (1988) Proton/electron stoichiometry of mitochondrial complex I estimated from the equilibrium thermodynamic force ratio. Biochem. J. 252: 473?479.

Bruinenberg PM, vanDijken JP & Scheffers WA (1983) An enzymic analysis of NADPH production and consumption inCandida utilis. J. Gen. Microbiol. 129: 965?971

Dijkhuizen L, Wiersma M & Harder W (1977) Energy production and growth ofPseudomonas oxalaticus OX1 on oxalate and formate. Arch. Microbiol. 115: 229?236

Eddy AA & Hopkins PG (1985) The putative electrogenic nitrate-protonsymport of the yeastCandida utilis. Comparison with the systems absorbing glucose or lactate. Biochem. J. 231: 291?297

Evans CT, Scragg AH & Ratledge C (1983) A comparative study of citrate efflux from mitochondria of oleaginous and non-oleaginous yeasts. Eur. J. Biochem. 130: 195?204

Fiechter A & vonMeyenburg HK (1969) Regulatory properties of growing cell populations ofSaccharomyces cerevisiae in a continuous culture system. In: Kocková-Kratochvílová A (Ed) Yeasts. The proceedings of the 2nd Symposium on Yeasts (pp 387?398). Slovenskej Akademie Vied, Bratislava

Fraenkel DG (1982) Carbohydrate metabolism. In: Strathern JN, Jones EW & Broach JR (Eds) The Molecular Biology of the YeastSaccharomyces, Metabolism and Gene Expression (pp 1?37). Cold Spring Harbor, New York

Frankena J, vanVerseveld HW & Stouthamer AH (1985) A continuous culture study of the bioenergetic aspects of growth and production of exocellular protease inBacillus licheniformis. Appl. Microbiol. Biotechol. 22: 169?176

Furukawa K, Heinzle E & Dunn IJ (1983) Influence of oxygen on the growth ofSaccharomyces cerevisiae in continuous culture. Biotechnol. Bioeng. 25: 2293?2317

Gommers PJF, vanSchie BJ, vanDijken JP & Kuenen JG (1988) Biochemical limits to microbial growth yields: An analysis of mixed substrate utilization. Biotechnol. Bioeng. 32: 86?94

Gottschalk G & Andreesen JR (1979) Energy metabolism in anaerobes. In: Quayle JR (Ed) Microbial Biochemistry 21 (pp 85?115). University Park Press, Baltimore

Gunter TE & Jensen BD (1986) The efficiencies of the component steps of oxidative phosphorylation. Arch. Biochem. Biophys. 248: 289?304

Harder W & vanDijken (1976) Theoretical considerations on the relation between energy production and growth of methane-utilizing bacteria. In: Schlegel HG, Gottschalk G & Pfennig N (Eds) Microbial Production and Utilization of Gases (H2, CH4, CO) (pp 403?418). E Goltze KG, Göttingen

Harder W, vanDijken JP & Roels JA (1981) Utilization of energy in methylotrophs. In: Dalton H (Ed) Microbial Growth on C1 Compounds (pp 258?269). Heyden, London

Haukelie AD & Lie S (1971) Molar growth yields of yeasts in anaerobic batch cultures. J. Gen. Microbiol. 69: 135?141

Jacobson MK & Bernofsky C (1974) Mitochondrial acetaldehyde dehydrogenase fromSaccharomyces cerevisiae. Biochim. Biophys. Acta 350: 277?291

Kashket ER (1982) Stoichiometry of the H+-ATPase of growing and resting aerobicEscherichia coli. Biochemistry, 21: 5534?5538

Klein HP & Jahnke L (1971) Variations in the localization of acetyl-coenzyme. A synthetase in aerobic yeast cells. J. Bacteriol. 106: 596?602

Korman?íková V, Ková? L & Vidová M (1969) Oxidative phosphorylation in yeast. V. Phosphorylation efficiencies in growing cells determined from molar growth yields. Biochim. Biophys. Acta 180: 9?17

Lagunas R (1976) Energy metabolism ofSaccharomyces cerevisiae: discrepancy between ATP balance and known metabolic functions. Biochim. Biophys. Acta 440: 661?674

Lagunas R & Ruiz E (1988) Balance of production and consumption of ATP in ammonium-starvedSaccharomyces cerevisiae. J. Gen. Microbiol. 134: 2507?2511

Lang JM & Cirillo VP (1987) Glucose transport in a kinaselessSaccharomyces cerevisiae mutant. J. Bacteriol. 169: 2932?2937

Lewin B (1985) The ribosome translation factory. In: Genes II (pp 150). J Wiley & Sons, New York, Chichester, Brisbane, Toronto & Singapore

Light PA & Garland PB (1971) A comparison of mitochondria fromTorulopsis utilis grown in continuous culture with glycerol, iron, ammonium, magnesium or phosphate as the growth-limiting nutrient. Biochem. J. 124: 123?134

Llorente N & Núñez de Castro I (1977) Physiological role of yeasts NAD(P)+ and NADP+-linked aldehyde dehydrogenases. Rev. Esp. Fisiol. 33: 135?142

Malpartida F & Serrano R (1981) Proton translocation catalyzed by the purified yeast plasma membrane ATPase reconstituted in liposomes. FEBS Lett. 131: 351?354

Mitchell R, West IC, Moody AJ & Mitchell P (1986) Measurement of the proton-motive stoichiometry of the respiratory chain of rat liver mitochondria: the effect ofN-ethylmaleimide. Biochim. Biophys. Acta 849: 229?235

Møller IM & Palmer JM (1981) Properties of the oxidation of exogenous NADH and NADPH by plant mitochondria. Evidence against a phosphatase or a nicotinamide nucleotide transhydrogenase being responsible for NADPH oxidation. Biochim. Biophys. Acta 638: 225?233

Murphy MP & Brand MD (1988) Membrane-potential-dependent changes in the stoichiometry of charge translocation by the mitochondrial electron transport chain. Eur. J. Biochem. 173: 637?644

Nelson N & Taiz L (1989) The evolution of H+-ATPases TIBS 14: 113?116

Ohnishi T (1973) Mechanism of electron transport and energy conservation in the site I region of the respiratory chain. Biochim. Biophys. Acta 301: 105?128

Otto R, Sonnenberg ASM, Veldkamp H & Konings WN (1980) Generation of an electrochemical proton gradient inStreptococcus cremoris by lactate efflux. Proc. Natl. Acad. Sci. USA 77: 5502?5506

Ouhabi R, Rigoulet M & Guerin B (1989) Flux-yield dependence of oxidative phosphorylation at constant ??H+. FEBS Lett. 254: 199?202

Oura E (1972) The effect of aeration on the growth energetics and biochemical composition of baker's yeast. Ph.D.thesis, University of Helsinki, Finland

Peinado JM, Cameira-Dos-Santos PJ & Loureiro-Días MC (1989) Regulation of glucose transport inCandida utilis. J. Gen. Microbiol. 135: 195?201

Perlin DS, San Francisco MJD, Slayman CW & Rosen BP (1986) H+/ATP stoichiometry of proton pumps fromNeurospora crassa andEscherichia coli. Arch. Biochem. Biophys. 248: 53?61

Pirt SJ (1965) The maintenance energy of bacteria in growing cultures. Proc. Roy. Soc. London B 163: 224?231

Postma E, Scheffers WA & vanDijken JP (1988) Adaptation of the kinetics of glucose transport to environmental conditions in the yeastCandida utilis CBS 621: a continuous-culture study. J. Gen. Microbiol. 134: 1109?1116

Postma E, Verduyn C, Scheffers WA & vanDijken JP (1989) Enzymic analysis of the Crabtree effect in glucose-limited chemostat cultures ofSaccharomyces cerevisiae. Appl. Environ. Microbiol. 55: 468?477

Rieger M, Käppeli O & Fiechter A (1983) The role of limited respiration in the incomplete oxidation of glucose bySaccharomyces cerevisiae. J. Gen. Microbiol. 129: 653?661

Roels JA (1983) Biochemically structured balances of microbial metabolism. In: Energetics and Kinetics in Biotechnology (pp 99?128). Elsevier Science Publishers, Amsterdam

Romano AH (1982) Facilitated diffusion of 6-deoxy-D-glucose in bakers' yeast: evidence against phosphorylation-associated transport of glucose. J. Bacteriol. 152: 1295?1297

Satyanarayana T & Klein HP (1976) Studies on the ?aerobic? acetyl CoA-synthetase ofSaccharomyces cerevisiae: purification, crystallization, and physical properties of the enzyme. Arch. Biochem. Biophys. 174: 480?490

Schatzmann H (1975) Anaerobes Wachstum von Saccharomyces cerevisiae. Ph.D.thesis Eidgenössische Technische Hochschule Zürich, Switzerland

Schuurmans Stekhoven FMAH (1966) Studies on yeast mitochondria. I. Existence of three phosphorylation sites along the respiratory chain of isolated yeast mitochondria. Arch. Biochem. Biophys. 115: 555?568

Schwarz RD & Keller FA (1982) Acetic acid production byClostridium thermoaceticum in pH-controlled batch fermentations at acidic pH. Appl. Env. Microbiol. 43: 1385?1392

Shul'govskaya EM, Pozmogova IN & Rabotnova IL (1988) Growth of a culture ofCandida utilis in the chemostat on a balanced medium. Microbiology 56: 496?499

Stouthamer AH (1973) A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie van Leeuwenhoek 39: 545?565

Stouthamer AH & Bettenhaussen CW (1975) Determination of the efficiency of oxidative phosphorylation in continuous cultures ofAerobacter aerogenes. Arch. Microbiol. 102: 187?192

Stouthamer AH (1979) The search for correlation between theoretical and experimental growth yields. In: Quayle JR (Ed) International Review of Biochemistry. Microbial Biochemistry Vol 21 (pp 1?46). University Park Press, Baltimore

Stouthamer AH, Bulthuis BA & vanVerseveld HW (1990) Energetics of growth at low growth rates and its relevance for the maintenance concept. In: Bazin MJ & Poole RK (Eds) Microbial Growth Dynamics (pp 85?102). Oxford University Press, Oxford

Stucki JW (1980) The optimal efficiency and the economic degrees of coupling of oxidative phosphorylation. Eur. J. Biochem. 109: 269?283

Taiz L (1986) Are biosynthetic reactions in plant cells thermodynamically coupled to glycolysis and the tonoplast proton motive force? J. Theor. Biol. 123: 231?238

Tempest DW & Neijssel OM (1984) The status of YATP and maintenance energy as biologically interpretable phenomena. Annual Rev. Microbiol. 38: 459?486

Thompson RC (1988) EFTu provides an internal kinetic standard for translational accuracy. TIBS 13: 91?93

Tuttle JH & Dugan PR (1976) Inhibition of growth, iron, and sulfur oxidation inThiobacillus ferrooxidans by simple organic compounds. Can. J. Microbiol. 22: 719?730

VanDijken JP & Harder W (1975) Growth yields of microorganisms on methanol and methane. A theoretical study. Biotechnol. Bioeng. 17: 15?30

VanDijken JP & Scheffers WA (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol. Rev. 32: 199?224

VanGent-Ruijters MLW, deVries W & Stouthamer AH (1975) Influence of nitrate on fermentation pattern, molar growth yields and synthesis of cytochrome b inPropionibacterium pentosaceum. J. Gen. Microbiol. 88: 36?48

VanUrk H, Mak PR, Scheffers WA & vanDijken JP (1988) Metabolic responses ofSaccharomyces cerevisiae CBS 8066 andCandida utilis CBS 621 upon transition from glucose limitation to glucose excess. Yeast 4: 283?291

VanUrk H, Bruinenberg PM, Veenhuis M, Scheffers WA & vanDijken JP (1989) Respiratory capacities of mitochondria ofSaccharomyces cerevisiae CBS 8066 andCandida utilisCBS 621 grown under glucose limitation. Antonie van Leeuwenhoek 56: 211?220

Verduyn C, vanDijken JP & Scheffers WA (1984) Colorimetric alcohol assays with alcohol oxidase. J. Microbiol. Meth. 2: 15?25

Verduyn C, Postma E, Scheffers WA & vanDijken JP (1990a) Physiology ofSaccharomyces cerevisiae in anaerobic glucoselimited chemostat cultures. J. Gen. Microbiol. 136: 395?403

?, (1990b) Energetics ofSaccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J. Gen. Microbiol. 136: 405?412

VonJagow G & Klingenberg M (1970) Pathways of hydrogen in mitochondria ofSaccharomyces carlbergensis. Eur. J. Biochem. 12: 583?592

VonMeyenburg HK (1969) Energetics of the budding cycle ofSaccharomyces cerevisiae during glucose limited aerobic growth. Arch. Mikrobiol. 66: 289?303

Wikström M (1984) Two protons are pumped from the mitochondrial matrix per electron transferred between NADH and ubiquinone. FEBS Lett. 169: 300?304