A theoretical approach to study the thermal impact of the DC and RF characteristics of a MgZnO/ZnO HEMT
Tóm tắt
In this work, a new current model of the MgZnO/ZnO high electron mobility transistors (HEMTs) has been developed considering the exact velocity-field characteristics of electrons in ZnO. The drain current of the device has been studied with reference to different applied potentials. The other device parameters, such as drain conductance, mutual conductance, cut-off frequency, and maximum operating frequency, are also calculated and their variations with different device parameters are studied. In addition, the variation of drain current with respect to ambient temperature and mole fraction of MgZnO have been studied and the results are reported. It has been noticed from our study that device characteristics depend significantly on the shift of temperature as well as the mole fraction of MgZnO. Finally, the theoretical results are compared with the experimental data reported earlier to crosscheck the validity of this model.
Tài liệu tham khảo
D.C. Look, Recent advances in ZnO materials and devices. Mater. Sci. Eng. B 80(1–3), 383–387 (2001). https://doi.org/10.1016/S0921-5107(00)00604-8
D.C. Look, Progress in ZnO materials and devices. J. Electron. Mater. 35, 1299–1305 (2006). https://doi.org/10.1007/s11664-006-0258-y
K. Ding, V. Avrutin, N. Izyumskaya, Ü. Özgür, H. Morkoç, E. Šermukšnis, A. Matulionis, High-performance BeMgZnO/ZnO heterostructure field-effect transistors. Phys. Status Solidi (RRL) Rapid Res. Lett. 14(12), 2000371 (2020). https://doi.org/10.1002/pssr.202000371
S. Choi, D.J. Rogers, E.V. Sandana, P. Bove, F.H. Teheran, C. Nenstiel, A. Hoffmann, R. McClintock, M. Razeghi, D. Look, A. Gentle, Radiative recombination of confined electrons at the MgZnO/ZnO heterojunction interface. Sci. Rep. 7, 7457 (2017). https://doi.org/10.1038/s41598-017-07568-z
Z. Li, P. Wang, J. He, H. Chen, J. Cheng, Effect of polarization on the performance of ZnO/MgZnO quantum cascade detector. Superlattices Microstruct. 111, 852–861 (2017). https://doi.org/10.1016/j.spmi.2017.07.046
Y. Kozuka, A. Tsukazaki, M. Kawasaki, Challenges and opportunities of ZnO-related single crystalline heterostructures. Appl. Phys. Rev. 1(1), 011303 (2014). https://doi.org/10.1063/1.4853535
X. Zhao, D. Jiang, M. Zhao, Y. Duan, Avalanche effect and high external quantum efficiency in MgZnO/Au/ZnO sandwich structure photodetector. Adv. Opt. Mater. 9(8), 2002023 (2021). https://doi.org/10.1002/adom.202002023
V.S. Rana, J.K. Rajput, T.K. Pathak, L.P. Purohit, Multilayer MgZnO/ZnO thin films for UV photodetectors. J. Alloy. Compd. 764, 724–729 (2018). https://doi.org/10.1016/j.jallcom.2018.06.139
J.D. Hwang, C.C. Yang, C.M. Chu, MgZnO/ZnO two-dimensional electron gas photodetectors fabricated by radio frequency sputtering. ACS Appl. Mater. Interfaces 9(28), 23904–23908 (2017). https://doi.org/10.1021/acsami.7b03201
D. Srikanya, A.M. Bhat, C. Sahu, Design and analysis of high-performance double-gate ZnO nano-structured thin-film ISFET for pH sensing applications. Microelectron. J. 137, 105811 (2023). https://doi.org/10.1016/j.mejo.2023.105811
S. Sasa, T. Hayafuji, M. Kawasaki, K. Koike, M. Yano, M. Inoue, Improved stability of high-performance ZnO/ZnMgO hetero-MISFETs. IEEE Electron Device Lett. 28(7), 543–545 (2007). https://doi.org/10.1109/LED.2007.899448
T. Takagi, H. Tanaka, S. Fujita, S. Fujita, Molecular beam epitaxy of high magnesium content single-phase wurzite MgxZn1-xO alloys (x≃ 0.5) and their application to solar-blind region photodetectors. Jpn. J. Appl. Phys. 42(4B), L401 (2003). https://doi.org/10.1143/JJAP.42.401
H.P. Zhou, M. Xu, W.Z. Shen, Anomalous temperature dependence of optical properties of cubic MgZnO: effect of carrier localization. Physica B Condens Matter 403(19–20), 3585–3588 (2008). https://doi.org/10.1016/j.physb.2008.05.034
H.A. Chin, I.C. Cheng, C.I. Huang, Y.R. Wu, W.S. Lu, W.L. Lee, J.Z. Chen, K.C. Chiu, T.S. Lin, Two dimensional electron gases in polycrystalline MgZnO/ZnO heterostructures grown by rf-sputtering process. J. Appl. Phys. 108(5), 054503 (2010). https://doi.org/10.1063/1.3475500
R. Singh, M.A. Khan, P. Sharma, M.T. Htay, A. Kranti, S. Mukherjee, Two-dimensional electron gases in MgZnO/ZnO and ZnO/MgZnO/ZnO heterostructures grown by dual ion beam sputtering. J. Phys. D Appl. Phys. 51(13), 13LT02 (2018). https://doi.org/10.1088/1361-6463/aab183
Y.K. Verma, V. Mishra, P.K. Verma, S.K. Gupta, Analytical modelling and electrical characterisation of ZnO based HEMTs. Int. J. Electron. 106(5), 707–720 (2019). https://doi.org/10.1080/00207217.2018.1545931
Y.K. Verma, V. Mishra, S. Gupta, A physics-based analytical model for MgZnO/ZnO HEMT. J. Circuits Syst. Comput. 29(01), 2050009 (2020). https://doi.org/10.1142/S0218126620500097
P. Wang, S. Ma, L. Guo, T. Shang, Z. Song, Y. Yang, Theoretical investigation of the impact of barrier thickness fluctuation scattering on transport characteristics in undoped MgZnO/ZnO heterostructures. Jpn. J. Appl. Phys. 54(9), 091102 (2015). https://doi.org/10.7567/JJAP.54.091102
R. Singh, M.A. Khan, S. Mukherjee, A. Kranti, Analytical Model for 2DEG Density in graded MgZnO/ZnO Heterostructures with cap Layer. IEEE Trans. Electron Devices 64(9), 3661–3667 (2017). https://doi.org/10.1109/TED.2017.2721437
P. Kumar, S. Chaudhary, M.A. Khan, S. Kumar and S. Mukherjee, Analytical study of ZnO-based HEMT for power switching. https://doi.org/10.21203/rs.3.rs-1140403/v1
S.S. Shinde, P.S. Shinde, S.M. Pawar, A.V. Moholkar, C.H. Bhosale, K.Y. Rajpure, Physical properties of transparent and conducting sprayed fluorine doped zinc oxide thin films. Solid State Sci. 10(9), 1209–1214 (2008). https://doi.org/10.1016/j.solidstatesciences.2007.11.031
S.S. Shinde, P.S. Shinde, C.H. Bhosale, K.Y. Rajpure, Optoelectronic properties of sprayed transparent and conducting indium doped zinc oxide thin films. J. Phys. D Appl. Phys. (2008). https://doi.org/10.1088/0022-3727/41/10/105109
S.S. Shinde, P.S. Shinde, C.H. Bhosale, K.Y. Rajpure, Zinc oxide mediated heterogeneous photocatalytic degradation of organic species under solar radiation. J. Photochem. Photobiol. B. 104(3), 425–433 (2011). https://doi.org/10.1016/j.jphotobiol.2011.04.010
S.S. Shinde, K.Y. Rajpure, Fast response ultraviolet Ga-doped ZnO based photoconductive detector. Mater. Res. Bull. 46(10), 1734–1737 (2011). https://doi.org/10.1016/j.materresbull.2011.05.032
M.A. Khan, P. Kumar, G. Siddharth, M. Das, S. Mukherjee, Analysis of drain current in polycrystalline MgZnO/ZnO and MgZnO/CdZnO HFET. IEEE Trans. Electron Devices 66(12), 5097–5102 (2019). https://doi.org/10.1109/TED.2019.2947422
K. Alfaramawi, Electric field dependence of the electron mobility in bulk wurtzite ZnO. Bull. Mater. Sci. 37, 1603–1606 (2014). https://doi.org/10.1007/s12034-014-0720-z
S.M. Sze, Semiconductor Devices Physics and Technology (Wiley India, 2011), p.246
N. DasGupta, A. DasGupta, An analytical expression for sheet carrier concentration vs gate voltage for HEMT modelling. Solid-State Electron. 36(2), 201–203 (1993). https://doi.org/10.1016/0038-1101(93)90140-L
J.S. Shi, H.F. Huang, X.Y. Liu, S.X. Zhao, L.Q. Zhang, P.F. Wang, Effect of device geometry on static and dynamic performance of AlGaN/GaN-on-Si high electron mobility transistor. Mater. Res. Express 3(8), 085013 (2016). https://doi.org/10.1088/2053-1591/3/8/085013
D. Liu, Velocity-field characteristics of MgxZn1−xO/ZnO heterostructures. J. Comput. Electron. 22, 603–611 (2023). https://doi.org/10.1007/s10825-022-01999-2
H. Tampo, H. Shibata, K. Maejima, A. Yamada, K. Matsubara, P. Fons, S. Kashiwaya, S. Niki, Y. Chiba, T. Wakamatsu, H. Kanie, Polarization-induced two-dimensional electron gases in ZnMgO/ZnO heterostructures. Appl. Phys. Lett. (2008). https://doi.org/10.1063/1.3028338
S. Chaudhary, P. Kumar, M.A. Khan, A. Kumar, S. Mukherjee, Impact of MgO spacer layer on microwave performance of MgZnO/ZnO HEMT. Eng. Res. Express (2022). https://doi.org/10.1088/2631-8695/ac6280
Y.H. Zan, S.L. Ban, Electronic mobility limited by optical phonons in symmetric MgxZn1-xO/ZnO quantum wells with mixed phases. Superlattices Microstruct. 150, 106782 (2021). https://doi.org/10.1016/j.spmi.2020.106782