A tdcA mutation reduces the invasive ability of Salmonella enterica serovar typhimurium
Tóm tắt
We previously observed that the transcription of some flagellar genes decreased in Salmonella Typhimurium tdcA mutant, which is a gene encoding the transcriptional activator of the tdc operon. Since flagella-mediated bacterial motility accelerates the invasion of Salmonella, we have examined the effect of tdcA mutation on the invasive ability as well as the flagellar biosynthesis in S. Typhimurium. A tdcA mutation caused defects in motility and formation of flagellin protein, FliC in S. Typhimurium. Invasion assays in the presence of a centrifugal force confirmed that the defect of flagellum synthesis decreases the ability of Salmonella to invade into cultured epithelial cells. In addition, we also found that the expression of Salmonella pathogenicity island 1 (SPI1) genes required for Salmonella invasion was down-regulated in the tdcA mutant because of the decreased expression of fliZ, a positive regulator of SPI1 transcriptional activator, hilA. Finally, the virulence of a S. Typhimurium tdcA mutant was attenuated compared to a wild type when administered orally. This study implies the role of tdcA in the invasion process of S. Typhimurium.
Tài liệu tham khảo
Bajaj, V., Lucas, R.L., Hwang, C., and Lee, C.A. (1996). Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. Mol. Microbiol. 22, 703–714.
Chilcott, G.S., and Hughes, K.T. (2000). Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar Typhimurium and Escherichia coli. Microbiol. Mol. Biol. Rev. 64, 694–708.
Choi, J., Shin, D., and Ryu, S. (2007). Implication of quorum sensing in Salmonella enterica serovar Typhimurium virulence: the luxS gene is necessary for expression of genes in pathogenicity Island I. Infect. Immun. 75, 4885–4890.
Datsenko, K.A., and Wanner, B.L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645.
Dorman, C.J., Barr, G.C., Ní Bhriain, N., and Higgins, C.F. (1988). DNA supercoiling and the anaerobic and growth phase regulation of tonB gene expression, J. Bacteriol. 170, 2816–2826.
Drlica, K. (1992). Control of bacterial DNA supercoiling. Mol. Microbiol. 6, 425–433.
Eichelberg, K., and Galán, J.E. (2000). The flagellar sigma factor FliA (σ28) regulates the expression of Salmonella genes associated with the centisome 63 type III secretion system. Infect. Immun. 68, 2735–2743.
Ganduri, Y.L., Sadda, S.R., Datta, M.W., Jambukeswaran, R.K., and Datta, P. (1993). TdcA, a transcriptional activator of the tdcABC operon of Escherichia coli, is a member of the LysR family of proteins. Mol. Gen. Genet. 240, 395–402.
Gellert, M., Mizuuchi, K., O’Dea, M.H., and Nash, H.A. (1976). DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc. Natl. Acad. Sci. USA 73, 3872–3876.
Goss, T.J., Schweizer, H.P., and Datta, P. (1988). Molecular characterization of the tdc operon of Escherichia coli K-12. J. Bacteriol. 170, 5352–5359.
Guiney, D.G. (1997). Regulation of bacterial virulence gene expression by the host environment. J. Clin. Invest. 99, 565–569.
Hagewood, B.T., Ganduri, Y.L., and Datta, P. (1994). Functional analysis of the tdcABC promoter of Escherichia coli: roles of TdcA and TdcR. J. Bacteriol. 176, 6214–6220.
Heßlinger, C., Fairhurst, S.A., and Sawers, G. (1998). Novel keto acid formate-lyase and propionate kinase enzymes are components of an anaerobic pathway in Escherichia coli that degrades L-threonine to propionate. Mol. Microbiol. 27, 477–492.
Higgins, C.F., Dorman, C.J., Stirling, D.A., Waddell, L., Booth, I.R., May, G., and Bremer, E. (1988). A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 52, 569–584.
Hsieh, L-.S., Burger, R.M., and Drlica, K. (1991). Bacterial DNA supercoiling and [ATP]/[ADP] changes associated with a transition to anaerobic growth. J. Mol. Biol. 219, 443–450.
Iyoda, S., Kamidoi, T., Hirose, K., Kutsukake, K., and Watanabe, H. (2001). A flagellar gene fliZ regulates the expression of invasion genes and virulence phenotype in Salmonella enterica serovar Typhimurium. Microb. Pathog. 30, 81–90.
Jones, G.W., Richardson, L.A., and Uhlman, D. (1981). The invasion of HeLa cells by Salmonella typhimurium: reversible and irreversible bacterial attachment and the role of bacterial motility. J. Gen. Microbiol. 127, 351–360.
Jones, B.D., Lee, C.A., and Falkow, S. (1992). Invasion by Salmonella typhimurium is affected by the direction of flagellar rotation. Infect. Immun. 60, 2475–2480.
Josenhans, C., and Suerbaum, S. (2002). The role of motility as a virulence factor in bacteria. Int. J. Med. Microbiol. 291, 605–614.
Kelly, A., Goldberg, M.D., Carroll, R.K., Danino, V., Hinton, J.C.D., and Dorman, C.J. (2004). A global role for Fis in the transcriptional control of metabolism and type III secretion in Salmonella enterica serovar Typhimurium. Microbiology 150, 2037–2053.
Kim, M., Lim, S., and Ryu, S. (2008). Molecular analysis of the Salmonella Typhimurium tdc operon regulation. J. Microbiol. Biotechnol. 18, 1024–1032.
Ko, M., and Park, C. (2000). H-NS-dependent regulation of flagellar synthesis is mediated by a LysR family protein. J. Bacteriol. 182, 4670–4672.
Komoriya, K., Shibano, N., Higano, T., Azuma, N., Yamaguchi, S., and Aizawa, S.I. (1999). Flagellar proteins and type III-exported virulence factors are the predominant proteins secreted into the culture media of Salmonella typhimurium. Mol. Microbiol. 34, 767–779.
Landini, P., and Zehnder, A.J.B. (2002). The global regulatory hns gene negatively affects adhesion to solid surfaces by anaerobically grown Escherichia coli by modulating expression of flagellar genes and lipopolysaccharide production. J. Bacteriol. 184, 1522–1529.
Lee, C.A., and Falkow, S. (1990). The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc. Natl. Acad. Sci. USA 87, 4304–4308.
Lehnen, D., Blumer, C., Polen, T., Wackwitz, B., Wendisch, V.F., and Unden, G. (2002). LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli. Mol. Microbiol. 45, 521–532.
Lim, S.-Y., Joe, M.H., Song, S.S., Lee, M.H., Foster, J.W., Park, Y.K., Choi, S.Y., and Lee, I.S. (2002). cuiD is a crucial gene for survival at high copper environment in Salmonella enterica serovar Typhimuirum. Mol. Cells 14, 177–184.
Lim, S., Yong, K., and Ryu, S. (2005). Analysis of Salmonella pathogenicity island 1 expression in response to the changes of osmolarity. J. Microbiol. Biotechnol. 15, 175–182.
Lim, S., Yoon, H., Ryu, S., Jung, J., Lee, M., and Kim, D. (2006). A comparative evaluation of radiation-induced DNA damage using real-time PCR: influence of base composition. Radiat. Res. 165, 430–437.
Lim, S., Yun, J., Yoon, H., Park, C., Kim, B., Jeon, B., Kim, D., and Ryu, S. (2007). Mlc regulation of Salmonella pathogenicity island I gene expression via hilE repression. Nucleic Acids Res. 35, 1822–1832.
Liu, S.L., Ezaki, T., Miura, H., Matsui, K., and Yabuuchi, E. (1988). Intact motility as a Salmonella typhi invasion-related factor. Infect. Immun. 56, 1967–1973.
Lucas, R.L., Lostroh, C.P., DIRusso, C.C., Spector, M.P., Wanner, B.L., and Lee, C.A. (2000). Multiple factors independently regulate hilA and invasion gene expression in Salmonella enterica serovar Typhimurium. J. Bacteriol. 182, 1872–1882.
Lostroh, C.P., and Lee, C.A. (2001). The Salmonella pathogenicity island-1 type III secretion system. Microbes Infect. 3, 1281–1291.
Maloy, S.R., Stewart, V.J., and Taylor, R.K. (1996). Genetic Analysis of Pathogenic Bacteria: A Laboratory Manual, (New York: Cold Spring Harbor Laboratory Press).
Sawers, G. (1998). The anaerobic degradation of L-serine and Lthreonine in enterobacteria: networks of pathways and regulatory signals. Arch. Microbiol. 171, 1–5.
Schmitt, C.K., Ikeda, J.S., Darnell, S.C., Watson, P.R., Bispham, J., Wallis, T.S., Weinstein, D.L., Metcalf, E.S., and O’Brien, A.D. (2001). Absence of all components of the flagellar export and synthesis machinery differentially alters virulence of Salmonella enterica serovar Typhimurium in models of typhoid fever, survival in macrophages, tissue culture invasiveness, and calf enterocolitis. Infect. Immun. 69, 5619–5625.
Schweizer, H.P., and Datta, P. (1989). Identification and DNA sequence of tdcR, a positive regulatory gene of the tdc operon of Escherichia coli. Mol. Gen. Genet. 218, 516–522.
Shi, W., Li, C., Louise, C., and Adler, J. (1993). Mechanism of adverse conditions causing lack of flagella in Escherichia coli. J. Bacteriol. 175, 2236–2240.
Song, M., Kim, H., Kim, E., Shin, M., Lee, H., Hong, Y., Rhee, J., Yoon, H., Ryu, S., Lim, S., et al. (2004). ppGpp-dependent stationary phase induction of genes on Salmonella pathogenicity island I. J. Biol. Chem. 279, 34183–34190.
Soutourina, O.A., and Bertin, P.N. (2003). Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol. Rev. 27, 505–523.
Stecher, B., Hapfelmeier, S., Müller, C., Kremer, M., Stallmach, T., and Hardt, W.D. (2004). Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar Typhimurium colitis in streptomycin-pretreated mice. Infect. Immun. 72, 4138–4150.
Sumantran, V.N., Tranguch, A.J., and Datta, P. (1989). Increased expression of biodegradative threonine dehydratase of Escherichia coli by DNA gyrase inhibitors. FEMS Microbiol. Lett. 65, 37–40.
Tomita, T., and Kanegasaki, S. (1982). Enhanced phagocytic response of macrophages to bacteria by impact caused by bacterial motility or centrifugation. Infect. Immun. 38, 865–870.
Wu, Y., and Datta, P. (1995). Influence of DNA topology on expression of the tdc operon in Escherichia coli K-12. Mol. Gen. Genet. 247, 764–767.
Wu, Y., Patil, R.V., and Datta, P. (1992). Catabolite gene activator protein and integration host factor act in concert to regulate tdc operon expression in Escherichia coli. J. Bacteriol. 174, 6918–6927.