A taxonomy-based approach to shed light on the babel of mathematical models for rice simulation

Environmental Modelling & Software - Tập 85 - Trang 332-341 - 2016
Roberto Confalonieri1, Simone Bregaglio1, Myriam Adam2, Françoise Ruget3, Tao Li4, Toshihiro Hasegawa5, Xinyou Yin6, Yan Zhu7, Kenneth J. Boote8, Samuel Buis3, Tamon Fumoto5, Donald S. Gaydon9, Tanguy Lafarge2, Manuel Marcaida4, Hiroshi Nakagawa10, Alex C. Ruane11, Balwinder Singh12, Upendra Singh13, Liang Tang14, Fulu Tao15,16, Job Fugice13, Hiroe Yoshida10, Zhao Zhang17, L. T. Wilson18, Jeff Baker19, Yubin Yang20, Yuji Masutomi21, Daniel Wallach22, Marco Acutis1, B.A.M. Bouman4
1Cassandra Lab (Italy)
2UMR AGAP - Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (TA A-108 / 03 - Avenue Agropolis - 34398 Montpellier Cedex 5 France - France)
3EMMAH - Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (INRAE Domaine Saint-Paul - Site Agroparc 228 route de l'Aérodrome CS40509 84914 AVIGNON CEDEX 9 - France)
4IRRI - International Rice Research Institute [Philippines] (Los Baños - Philippines - Philippines)
5NIAES - National Institute of Agro-Environmental Sciences (3-1-3 Kannondai, Tsukuba, 305-8604, Japan - Japan)
6Centre for Crop Systems Analysis (Netherlands)
7National Engineering and Technology Center for Information Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production (China)
8UF - University of Florida [Gainesville] (Gainesville, FL 32611 - United States)
9CSIRO - Commonwealth Scientific and Industrial Research Organisation [Canberra] (GPO Box 1700, Canberra ACT 2600 - Australia)
10NARO - National Agriculture and Food Research Organization (Japan)
11GISS - NASA Goddard Institute for Space Studies (2880 Broadway, New York, NY 10025 - United States)
12CIMMYT - International Maize and Wheat Improvement Center (Apdo. Postal 6-641 06600 Mexico City Mexique - Mexico)
13IFDC - International Fertilizer Development Center (46 David Lilienthal Dr, Muscle Shoals, AL 35661 1100 17th St NW, Suite 610, Washington, DC 20036 - United States)
14NAU - Nanjing Agricultural University (Nanjing 210095 Jiangsu Province P.R. China - China)
15China Academy of Chinese Medicinal Sciences (China)
16LUKE - Natural Resources Institute Finland (PO Box 68, FI-80101 Joensuu, Finland - Finland)
17State Key Laboratory of Earth Surface Processes and Resource Ecology (China)
18Texas A (France)
19USDA-ARS : Agricultural Research Service (United States)
20Texas A and M AgriLife Research (United States)
21College of Agriculture (Harbin 150030 China - China)
22AGIR - AGroécologie, Innovations, teRritoires (Centre de Recherches INRA de Toulouse Chemin de Borderouge 31326 CASTANET TOLOSAN - France)

Tóm tắt

Từ khóa


Tài liệu tham khảo

Acock, 1991, Potential for using long-term field research data to develop and validate crop simulators, Agron. J., 83, 56, 10.2134/agronj1991.00021962008300010015x

Adam, 2010, CROSPAL, software that uses agronomic expert knowledge to assist modules selection for crop growth simulation, Environ. Model. Softw., 25, 946, 10.1016/j.envsoft.2010.02.007

Asseng, 2013, Uncertainty in simulating wheat yields under climate change, Nat. Clim. Change, 3, 827, 10.1038/nclimate1916

Bergez, 2014, Evolution of the STICS crop model to tackle new environmental issues: new formalisms and integration in the modelling and simulation platform RECORD, Environ. Modell. Softw., 62, 370, 10.1016/j.envsoft.2014.07.010

Biernath, 2011, Evaluating the ability of four crop models to predict different environmental impacts on spring wheat grown in open-top chambers, Eur. J. Agron., 35, 71, 10.1016/j.eja.2011.04.001

Bouman, 2006, Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions, Agr. Syst., 87, 249, 10.1016/j.agsy.2004.09.011

Brisson, 1998, STICS: a generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn, Agronomie, 18, 311, 10.1051/agro:19980501

Choi, 2010, A survey of binary similarity and distance measures, J. Syst. Cybern. Inf., 8, 43

Confalonieri, 2010, Comparison of sensitivity analysis techniques: a case study with the rice model WARM, Ecol. Model, 221, 1897, 10.1016/j.ecolmodel.2010.04.021

Confalonieri, 2012, Quantifying plasticity in simulation models, Ecol. Model, 225, 159, 10.1016/j.ecolmodel.2011.11.022

Confalonieri, 2016, Uncertainty in crop model predictions: what is the role of users?, Environ. Modell. Softw., 81, 165, 10.1016/j.envsoft.2016.04.009

Confalonieri, 2009, An improved model to simulate rice yield, Agron. Sustain. Dev., 29, 463, 10.1051/agro/2009005

Cormack, 1971, A review of classification, J. Roy. Stat. Soc. A Sta, 134, 321, 10.2307/2344237

Costello, 2005, Best practices in exploratory factor analysis: four recommendations for getting the most from your analysis, Prac. Assess. Rese. Eval., 10, 1

De Wit, 1978

Diekkrüger, 1995, Validity of agroecosystem models. A comparison of results of different models applied to the same data set, Ecol. Model, 81, 3, 10.1016/0304-3800(94)00157-D

Dubitzky, 2013, 2367

Fabrigar, 1999, Evaluating the use of exploratory factor analysis in psychological research, Psychol. Methods, 3, 272, 10.1037/1082-989X.4.3.272

Farquhar, 1980, A biochemical model of photosynthesis CO2 assimilation in leaves of C3 species, Planta, 149, 78, 10.1007/BF00386231

Fumoto, 2008, Revising a process-based biogeochemistry model (DNDC) to simulate methane emission from rice paddy fields under various residue management and fertilizer regimes, Glob. Change Biol., 14, 382, 10.1111/j.1365-2486.2007.01475.x

Gaydon, 2012, Capturing the role of algae in rice crop production and soil organic carbon maintenance, Eur. J. Agron., 39, 35, 10.1016/j.eja.2012.01.004

Gaydon, 2012, Rice in cropping systems: modelling transitions between flooded and non-flooded soil environments, Eur. J. Agron., 39, 9, 10.1016/j.eja.2012.01.003

Hasegawa, 1997, Modelling the effect of nitrogen on rice growth and development, vol. 2, 243

Hay, 2006

Holzworth, 2014, APSIM – evolution towards a new generation of agricultural systems simulation, Environ. Model. Softw., 62, 327, 10.1016/j.envsoft.2014.07.009

Horie, 1995, The rice crop simulation model SIMRIW and its testing, 51

Israel, 1993, The emergence of biomathematics and the case of population dynamics. A revival of mechanical reductionism and Darwinism, Sci. Context, 6, 469, 10.1017/S0269889700001484

Jakeman, 2006, Ten iterative steps in development and evaluation of environmental models, Environ. Model. Softw., 21, 602, 10.1016/j.envsoft.2006.01.004

Janssen, 1995, Calibration of process-oriented models, Ecol. Model, 83, 55, 10.1016/0304-3800(95)00084-9

Kaiser, 1960, The application of electronic computers to factor analysis, Educ. Psychol. Meas., 20, 141, 10.1177/001316446002000116

Kumar, 2016, Compensatory phenotypic plasticity in irrigated rice: sequential formation of yield components and simulation with SAMARA model, Field Crop. Res., 193, 164, 10.1016/j.fcr.2016.04.036

Li, 2015, Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions, Glob. Change Biol., 21, 1328, 10.1111/gcb.12758

Malinvaud, 1964

Muleta, 2005, Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model, J. Hydrol., 306, 127, 10.1016/j.jhydrol.2004.09.005

Passioura, 1996, Simulation models: science, snake oil, education, or engineering?, Agron. J., 88, 690, 10.2134/agronj1996.00021962008800050002x

Rosenzweig, 2013, The agricultural model Intercomparison and improvement project (AgMIP): protocols and pilot studies, Agr. For. Meteorol., 170, 166, 10.1016/j.agrformet.2012.09.011

Rötter, 2012, Simulation of spring barley yield in different climatic zones of Northern and Central Europe: a comparison of nine crop models, Field Crop. Res., 133, 23, 10.1016/j.fcr.2012.03.016

Ruane, 2016, Multi-wheat-model ensemble responses to interannual climate variability, Environ. Modell. Softw., 81, 86, 10.1016/j.envsoft.2016.03.008

Sinclair, 2000, Criteria for publishing papers on crop modelling, Field Crop. Res., 68, 165, 10.1016/S0378-4290(00)00105-2

Singh, 1993

Sokal, 1963

Sneath, 1973

Tang, 2009, RiceGrow: a rice growth and productivity model, NJAS – Wageningen J. Life Sci., 57, 83, 10.1016/j.njas.2009.12.003

Tao, 2013, Climate change, high temperature stress, rice productivity and water use in eastern China: a new super-ensemble-based probabilistic projection, J. Appl. Meteorol. Clim., 52, 531, 10.1175/JAMC-D-12-0100.1

Tarantola, 2003, SAMO 2001: methodological advances and innovative applications of sensitivity analysis, Reliab. Eng. Syst. Saf., 79, 121, 10.1016/S0951-8320(02)00221-1

Van Ittersum, 2003, On approaches and applications of the Wageningen crop models, Eur. J. Agron., 18, 201, 10.1016/S1161-0301(02)00106-5

Van Keulen, 1982, 87

Van Vliet, 2016, A review of current calibration and validation practices in land-change modeling, Environ. Modell. Softw., 82, 174, 10.1016/j.envsoft.2016.04.017

Von Neumann, 1955, Method in the physical sciences

Wallach, 2011, Crop model calibration: a statistical perspective, Agron. J., 103, 1144, 10.2134/agronj2010.0432

Wallach, 2006

Warren Wilson, 1967, Ecological data on dry-matter production by plants and plant communities, 77

Wery, 2005, Differential effects of soil water deficit on the basic plant functions and their significance to analyse crop responses to water deficit in indeterminate plants, Aust. J. Agr. Res., 56, 1201, 10.1071/AR05066

Yin, 2005

Yoshida, 2010, A model for simulating plant N accumulation, growth and yield of diverse rice genotypes grown under different soil and climatic conditions, Field Crop. Res., 117, 122, 10.1016/j.fcr.2010.02.007

Yoshida, 2011, Simulation of the effects of genotype and N availability on rice growth and yield response to an elevated atmospheric CO2 concentration, Field Crop. Res., 124, 433, 10.1016/j.fcr.2011.07.016