A systems approach reveals urban pollinator hotspots and conservation opportunities

Nature Ecology and Evolution - Tập 3 Số 3 - Trang 363-373
Katherine C. R. Baldock1, Mark A. Goddard2, D. M. Hicks3, William E. Kunin2, Nadine Mitschunas1, Helen Morse1, Lynne M. Osgathorpe1, Simon G. Potts4, Kirsty M. Robertson2, Anna Scott4, Phillip P. A. Staniczenko5, Graham N. Stone3, Ian P. Vaughan6, Jane Memmott7
1School of Biological Sciences, University of Bristol, Bristol, UK
2School of Biology, University of Leeds, Leeds, UK
3Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
4Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
5National Socio-Environmental Synthesis Center (SESYNC), Annapolis, MD, USA
6Cardiff School of Biosciences, Cardiff University, Cardiff, UK
7Cabot Institute, University of Bristol, Bristol, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Dicks, L. V. et al. Ten policies for pollinators. Science 354, 975–976 (2016).

Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229 (2016).

IPBES. The Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production. (eds Potts, S. G., Imperatriz-Fonseca, V. L. & Ngo, H. T.) (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany, 2016).

Ollerton, J., Erenler, H., Edwards, M. & Crockett, R. Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science 346, 1360–1362 (2014).

Knop, E. et al. Artificial light as a new threat to pollination. Nature 548, 206–209 (2017).

Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).

Aronson, M. F. J. et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. Lond. B 281, 20133330 (2014).

Fortel, L. et al. Decreasing abundance, increasing diversity and changing structure of the wild bee community (Hymenoptera: Anthophila) along an urbanization gradient. PLoS ONE 9, e104679 (2014).

Baldock, K. C. R. et al. Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc. R. Soc. Lond. B 282, 20142849 (2015).

Hall, D. M. et al. The city as a refuge for insect pollinators. Conserv. Biol. 31, 24–29 (2017).

Turrini, T. & Knop, E. A landscape ecology approach identifies important drivers of urban biodiversity. Glob. Change Biol. 21, 1652–1667 (2015).

Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).

Matteson, K. C., Ascher, J. S. & Langellotto, G. A. Bee richness and abundance in New York city urban gardens. Ann. Entomol. Soc. Am. 101, 140–150 (2008).

Ahrne, K., Bengtsson, J. & Elmqvist, T. Bumble bees (Bombus spp) along a gradient of increasing urbanization. PLoS ONE 4, e5574 (2009).

Foster, G., Bennett, J. & Sparks, T. An assessment of bumblebee (Bombus spp) land use and floral preference in UK gardens and allotments cultivated for food. Urban Ecosyst. 20, 425–434 (2017).

Bates, A. J. et al. Changing bee and hoverfly pollinator assemblages along an urban–rural gradient. PLoS ONE 6, e23459 (2011).

Normandin, E., Vereecken, N. J., Buddle, C. M. & Fournier, V. Taxonomic and functional trait diversity of wild bees in different urban settings. PeerJ 5, e3051 (2017).

Garbuzov, M., Fensome, K. A. & Ratnieks, F. L. W. Public approval plus more wildlife: twin benefits of reduced mowing of amenity grass in a suburban public park in Saltdean, UK. Insect Conserv. Divers. 8, 107–119 (2015).

Geslin, B., Le Féon, V., Kuhlmann, M., Vaissière, B. E. & Dajoz, I. The bee fauna of large parks in downtown Paris, France. Ann. Soc. Entomol. Fr. 51, 487–493 (2016).

Banaszak-Cibicka, W., Ratyńska, H. & Dylewski, Ł. Features of urban green space favourable for large and diverse bee populations (Hymenoptera: Apoidea: Apiformes). Urban For. Urban Green. 20, 448–452 (2016).

Pauw, A. & Louw, K. Urbanization drives a reduction in functional diversity in a guild of nectar-feeding birds. Ecol. Soc. 17, 27 (2012).

Chong, K. Y. et al. Not all green is as good: different effects of the natural and cultivated components of urban vegetation on bird and butterfly diversity. Biol. Conserv. 171, 299–309 (2014).

Mace, G. M. Whose conservation? Science 345, 1558–1560 (2014).

Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).

De Visser, S. N., Freymann, B. P. & Olff, H. The Serengeti food web: empirical quantification and analysis of topological changes under increasing human impact. J. Anim. Ecol. 80, 484–494 (2011).

Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).

Kaiser-Bunbury, C. N., Muff, S., Memmott, J., Muller, C. B. & Caflisch, A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13, 442–452 (2010).

Staniczenko, P. P. A., Lewis, O. T., Jones, N. S. & Reed-Tsochas, F. Structural dynamics and robustness of food webs. Ecol. Lett. 13, 891–899 (2010).

Aronson, M. F. J. et al. Hierarchical filters determine community assembly of urban species pools. Ecology 97, 2952–2963 (2016).

Hope, D. et al. Socioeconomics drive urban plant diversity. Proc. Natl Acad. Sci. USA 100, 8788–8792 (2003).

Leong, M., Dunn, R. R. & Trautwein, M. D. Biodiversity and socioeconomics in the city: a review of the luxury effect. Biol. Lett. 14, 20180082 (2018).

Vaughan, I. P. et al. econullnetr: an R package using null models to analyse the structure of ecological networks and identify resource selection. Methods Ecol. Evol. 9, 728–733 (2018).

Baude, M. et al. Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature 530, 85–88 (2016).

Hicks, D. M. et al. Food for pollinators: quantifying the nectar and pollen resources of urban flower meadows. PLoS ONE 11, e0158117 (2016).

Eklöf, A., Tang, S. & Allesina, S. Secondary extinctions in food webs: a Bayesian network approach. Methods Ecol. Evol. 4, 760–770 (2013).

Wood, C. J., Pretty, J. & Griffin, M. A case–control study of the health and well-being benefits of allotment gardening. J. Public Health 38, e336–e344 (2016).

Salisbury, A. et al. Enhancing gardens as habitats for flower-visiting aerial insects (pollinators): should we plant native or exotic species? J. Appl. Ecol. 52, 1156–1164 (2015).

Stott, I., Soga, M., Inger, I. & Gaston, K. J. Land sparing is crucial for urban ecosystem services. Front. Ecol. Environ. 13, 387–393 (2015).

Soga, M., Yamaura, Y., Koike, S. & Gaston, K. J. Land sharing vs. land sparing: does the compact city reconcile urban development and biodiversity conservation? J. App. Ecol. 51, 1378–1386 (2014).

Pocock, M. J. O., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977 (2012).

Orsini, F., Kahane, R., Nono-Womdim, R. & Gianquinto, G. Urban agriculture in the developing world: a review. Agron. Sustain. Dev. 33, 695–720 (2013).

Lepczek, C. A. et al. Biodiversity in the city: fundamental questions for understanding the ecology of urban green spaces for biodiversity conservation. Bioscience 67, 799–807 (2017).

United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2014 Revision, Highlights (ST/ESA/SER.A/352) (2014).

Aronson, M. F. J. et al. Biodiversity in the city: key challenges for urban green space management. Front. Ecol. Environ. 15, 189–196 (2017).

Willmer, P. G. & Stone, G. N. Behavioral, ecological, and physiological determinants of the activity patterns of bees. Adv. Stud. Behav. 34, 347–466 (2004).

R Development Core Team. R: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).

Bates, D., Maechler, M. & Bolker, B. lme4: Linear Mixed-Effects Models Using S4 Classes R package version 0.999999–2 http://CRAN.R-project.org/package=lme4 (2013).

Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometrical J. 50, 346–363 (2008).

Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. Mixed Effects Models and Extensions in Ecology with R (Springer, New York, 2009).

Orford, K. A., Vaughan, I. P. & Memmott, J. The forgotten flies: the importance of non-syrphid Diptera as pollinators. Proc. R. Soc. Lond. B 282, 20142934 (2015).

Rader, R. et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl Acad. Sci. USA 113, 146–151 (2016).

Willmer, P. G. Pollination and Floral Ecology (Princeton Univ. Press, Princeton and Oxford, 2011).

Hill, M. O., Preston, C. D. & Roy, D. B. PLANTATT—Attributes of British and Irish Plants: Status, Size, Life History, Geography and Habitats (Centre for Ecology and Hydrology, 2004).

Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn (Springer, New York, 2002).