A systematic review of the cost-effectiveness of ultrasound in emergency care settings
Tóm tắt
The use of ultrasound (US) in emergency departments (ED) has become widespread. This includes both traditional US scans performed by radiology departments as well as point-of-care US (POCUS) performed by bedside clinicians. There has been significant interest in better understanding the appropriate use of imaging and where opportunities to enhance cost-effectiveness may exist. The purpose of this systematic review is to identify published evidence surrounding the cost-effectiveness of US in the ED and to grade the quality of that evidence. We performed a systematic review of the literature following Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. Studies were considered for inclusion if they were: (1) economic evaluations, (2) studied the clinical use of ultrasound, and (3) took place in an emergency care setting. Included studies were critically appraised using the Consolidated Health Economic Evaluation Reporting Standards checklist. We identified 631 potentially relevant articles. Of these, 35 studies met all inclusion criteria and were eligible for data abstraction. In general, studies were supportive of the use of US. In particular, 11 studies formed a strong consensus that US enhanced cost-effectiveness in the investigation of pediatric appendicitis and 6 studies supported enhancements in the evaluation of abdominal trauma. Across the studies, weaknesses in methodology and reporting were common, such as lack of sensitivity analyses and inconsistent reporting of incremental cost-effectiveness ratios. The body of existing evidence, though limited, generally demonstrates that the inclusion of US in emergency care settings allows for more cost-effective care. The most definitive evidence for improvements in cost-effectiveness surround the evaluation of pediatric appendicitis, followed by the evaluation of abdominal trauma. POCUS outside of trauma has had mixed results.
Tài liệu tham khảo
Bioeffects Committee of the American Institute of Ultrasound in Medicine (2008) American Institute of Ultrasound in Medicine consensus report on potential bioeffects of diagnostic ultrasound: executive summary. J Ultrasound Med 27:503–515
Bierig SM, Jones A (2009) Accuracy and cost comparison of ultrasound versus alternative imaging modalities, including CT, MR, PET, and angiography. J Diagn Med Sonogr 25:138–144
Moore CL, Copel JA (2011) Point-of-care ultrasonography. N Engl J Med 364:749–757
Shekelle PG, Wachter RM, Pronovost PJ et al (2013) Making health care safer II: an updated critical analysis of the evidence for patient safety practices. Evid Rep Technol Assess 211:1–945
Lamperti M, Bodenham AR, Pittiruti M et al (2012) International evidence-based recommendations on ultrasound-guided vascular access. Intensive Care Med 38(7):1105–1117
Smith-bindman R, Miglioretti DL, Johnson E et al (2012) Use of diagnostic imaging studies and associated radiation exposure for patients enrolled in large integrated health care systems, 1996–2010. JAMA 307(22):2400–2409
Smith-bindman R, Kwan ML, Marlow EC et al (2019) Trends in use of medical imaging in US health care systems and in Ontario, Canada, 2000–2016. JAMA 322(9):843–856
Moore CL, Molina AA, Lin H (2006) Ultrasonography in community emergency departments in the United States: access to ultrasonography performed by consultants and status of emergency physician-performed ultrasonography. Ann Emerg Med 47(2):147–153
Sanders J, Noble VE, Raja AS et al (2015) Access to and use of point-of-care ultrasound in the emergency department. West J Emerg Med 16(5):747–752
Leschyna M, Hatam E, Britton S et al (2019) Current state of point-of-care ultrasound usage in Canadian emergency departments. Cureus. https://doi.org/10.7759/cureus.4246
Chamberlain MC, Reid SR, Madhok M (2011) Utilization of emergency ultrasound in pediatric emergency departments. Pediatr Emerg Care 27(7):628–632
American College of Radiology (2020) ACR Appropriateness Criteria. https://acsearch.acr.org/list. Accessed Feb 15 2020.
American Board of Internal Medicine Foundation (2020) Choosing Wisely Initiative. https://www.choosingwisely.org. Accessed Feb 15 2020.
American Institute of Ultrasound in Medicine (2020) Ultrasound First. http://www.ultrasoundfirst.org. Accessed Feb 15 2020.
Sistrom CL, McKay NL (2005) Costs, charges, and revenues for hospital diagnostic imaging procedures: differences by modality and hospital characteristics. J Am Coll Radiol 2(6):511–519
Husereau D, Drummond M, Petrou S et al (2013) Consolidated health economic evaluation reporting standards (CHEERS) statement. Int J Technol Assess Health Care 29(2):117–122
Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med 151(4):W65-94
Axelrod DA, Sonnad SS, Hirschl RB (2000) An economic evaluation of sonographic examination of children with suspected appendicitis. J Pediatr Surg 35(8):1236–1241
Peña BM, Taylor GA, Fishman SJ, Mandl KD (2000) Costs and effectiveness of ultrasonography and limited computed tomography for diagnosing appendicitis in children. Pediatrics 106(4):672–676
Pershad J, Waters TM, Langham MR, Li T, Huang EY (2015) Cost-effectiveness of diagnostic approaches to suspected appendicitis in children. J Am Coll Surg. 220(4):738–746
Van atta AJ, Baskin HJ, Maves CK, et al (2015) Implementing an ultrasound-based protocol for diagnosing appendicitis while maintaining diagnostic accuracy. Pediatr Radiol 45(5):678–685
Wagenaar AE, Tashiro J, Wang B et al (2015) Protocol for suspected pediatric appendicitis limits computed tomography utilization. J Surg Res 199(1):153–158
Gregory S, Kuntz K, Sainfort F, Kharbanda A (2016) Cost-effectiveness of integrating a clinical decision rule and staged imaging protocol for diagnosis of appendicitis. Value Health 19(1):28–35
Anderson KT, Bartz-kurycki M, Austin MT et al (2017) Approaching zero: implications of a computed tomography reduction program for pediatric appendicitis evaluation. J Pediatr Surg 52(12):1909–1915
Imler D, Keller C, Sivasankar S et al (2017) Magnetic resonance imaging versus ultrasound as the initial imaging modality for pediatric and young adult patients with suspected appendicitis. Acad Emerg Med 24(5):569–577
Kharbanda AB, Christensen EW, Dudley NC et al (2018) Economic analysis of diagnostic imaging in pediatric patients with suspected appendicitis. Acad Emerg Med 25(7):785–794
Kobayashi E, Johnson B, Goetz K, Scanlan J, Weinsheimer R (2018) Does the implementation of a pediatric appendicitis pathway promoting ultrasound work outside of a children’s hospital? Am J Surg 215(5):917–920
Nordin AB, Sales S, Nielsen JW, Adler B, Bates DG, Kenney B (2018) Standardized ultrasound templates for diagnosing appendicitis reduce annual imaging costs. J Surg Res 221:77–83
Branney SW, Moore EE, Cantrill SV, Burch JM, Terry SJ (1997) Ultrasound based key clinical pathway reduces the use of hospital resources for the evaluation of blunt abdominal trauma. J Trauma 42(6):1086–1090
Partrick DA, Bensard DD, Moore EE, Terry SJ, Karrer FM (1998) Ultrasound is an effective triage tool to evaluate blunt abdominal trauma in the pediatric population. J Trauma 45(1):57–63
Arrillaga A, Graham R, York JW, Miller RS (1999) Increased efficiency and cost-effectiveness in the evaluation of the blunt abdominal trauma patient with the use of ultrasound. Am Surg 65(1):31–35
Frezza EE, Ferone T, Martin M (1999) Surgical residents and ultrasound technician accuracy and cost-effectiveness of ultrasound in trauma. Am Surg 65(3):289–291
Melniker LA, Leibner E, Mckenney MG, Lopez P, Briggs WM, Mancuso CA (2006) Randomized controlled clinical trial of point-of-care, limited ultrasonography for trauma in the emergency department: the first sonography outcomes assessment program trial. Ann Emerg Med 48(3):227–235
Hall MK, Omer T, Moore CL, Taylor RA (2016) Cost-effectiveness of the cardiac component of the focused assessment of sonography in trauma examination in blunt trauma. Acad Emerg Med 23(4):415–423
Durston W, Carl ML, Guerra W et al (2001) Comparison of quality and cost-effectiveness in the evaluation of symptomatic cholelithiasis with different approaches to ultrasound availability in the ED. Am J Emerg Med 19(4):260–269
Goodacre S, Stevenson M, Wailoo A, Sampson F, Sutton AJ, Thomas S (2006) How should we diagnose suspected deep-vein thrombosis? QJM 99(6):377–388
Young N, Kinsella S, Raio CC et al (2010) Economic impact of additional radiographic studies after registered diagnostic medical sonographer (RDMS)-certified emergency physician-performed identification of cholecystitis by ultrasound. J Emerg Med 38(5):645–651
Ward MJ, Sodickson A, Diercks DB, Raja AS (2011) Cost-effectiveness of lower extremity compression ultrasound in emergency department patients with a high risk of hemodynamically stable pulmonary embolism. Acad Emerg Med 18(1):22–31
Melnikow J, Xing G, Cox G et al (2016) Cost analysis of the STONE randomized trial: can health care costs be reduced one test at a time? Med Care 54(4):337–342
Sternberg KM, Littenberg B (2017) Trends in imaging use for the evaluation and followup of kidney stone disease: a single center experience. J Urol 198(2):383–388
Hazlett KS, Wagner A, Guidi C, Victoria D, Weir S, Wise S (1996) Cost effectiveness of pelvic sonogram in the emergency room: endovaginal vs. transabdominal examination. Emergency Radiol 3(5):231–235
Durston WE, Carl ML, Guerra W, Eaton A, Ackerson LM (2000) Ultrasound availability in the evaluation of ectopic pregnancy in the ED: comparison of quality and cost-effectiveness with different approaches. Am J Emerg Med 18(4):408–417
Al Wattar BH, Frank M, Fage E, Gupta P (2014) Use of ultrasound in emergency gynaecology. J Obstet Gynaecol 34(2):172–173
Wyrick JJ, Kalvaitis S, Mcconnell KJ, Rinkevich D, Kaul S, Wei K (2008) Cost-efficiency of myocardial contrast echocardiography in patients presenting to the emergency department with chest pain of suspected cardiac origin and a nondiagnostic electrocardiogram. Am J Cardiol 102(6):649–652
Jasani G, Papas M, Patel AJ et al (2018) Immediate stress echocardiography for low-risk chest pain patients in the emergency department: a prospective observational cohort study. J Emerg Med 54(2):156–164
Baugh CW, Sun BC, Syncope Risk Stratification Study Group (2019) Variation in diagnostic testing for older patients with syncope in the emergency department. Am J Emerg Med 37(5):810–816
Gc VS, Alshurafa M, Sturgess DJ et al (2019) Cost-minimisation analysis alongside a pilot study of early tissue doppler evaluation of diastolic dysfunction in emergency department non-ST elevation acute coronary syndromes (TEDDy-NSTEACS). BMJ Open. https://doi.org/10.1136/bmjopen-2018-023920
Mcgahan JP, Cronan MS, Richards JR, Jones CD (2000) Comparison of US utilization and technical costs before and after establishment of 24-hour in-house coverage for US examinations. Radiology 216(3):788–791
Morrow DS, Broder J (2015) Cost-effective, reusable, leak-resistant ultrasound-guided vascular access trainer. J Emerg Med 49(3):313–317
Allen B, Carrol LV, Hughes DR, Hemingway J, Duszak R, Rosenkrantz AB (2017) Downstream imaging utilization after emergency department ultrasound interpreted by radiologists versus nonradiologists: a medicare claims-based Study. J Am Coll Radiol 14(4):475–481
Huang Z, Vintzileos W, Gordish-dressman H, Bandarkar A, Reilly BK (2017) Pediatric peritonsillar abscess: outcomes and cost savings from using transcervical ultrasound. Laryngoscope 127(8):1924–1929
Van Schaik GWW, Van Schaik KD, Murphy MC (2019) Point-of-care ultrasonography (POCUS) in a community emergency department: an analysis of decision making and cost savings associated with POCUS. J Ultrasound Med 38(8):2133–2140
Farmer SA, Brown NA (2017) Value-based approaches for emergency care in a new era. Ann Emerg Med 69(6):684–686
American College of Surgeons (2018) Advanced trauma life support: student course manual, 10th edn. Illinois, Chicago
Bierig SM, Jones A (2009) Accuracy and cost comparison of ultrasound versus alternative imaging modalities, including CT, MR, PET, and angiography. J Diagn Med Sonography 25(3):38–144
Blaivas M, Harwood RA, Lambert MJ (1999) Decreasing length of stay with emergency ultrasound examination of the gallbladder. Acad Emerg Med 6:1020–1023
Burgher SW, Tandy TK, Dawdy MR (1998) Transvaginal ultrasonography by emergency physicians decreases patient time in the emergency department. Acad Emerg Med 5:802–807
Leung J, Duffy M, Finckh A (2006) Real-time ultrasonographically guided internal jugular vein catheterization in the emergency department increases success rates and reduces complications: a randomized, prospective study. Ann Emerg Med 48:540–547
Randolph AG, Cook DJ, Gonzales CA, Pribble CG (1996) Ultrasound guidance for placement of central venous catheters: a meta-analysis of the literature. Crit Care Med 24:2053–2058
Zhou A, Yousem DM, Alvin MD (2018) Cost-effectiveness analysis in radiology: a systematic review. J Am Coll Radiol 15(11):1536–1546. https://doi.org/10.1016/j.jacr.2018.06.018 (Epub 2018 Jul 26)
Otero HJ, Rybicki FJ, Greenberg D, Neumann PJ (2008) Twenty years of cost-effectiveness analysis in medical imaging: are we improving? Radiology 249(3):917–925. https://doi.org/10.1148/radiol.2493080237