Đánh giá có hệ thống các phương pháp đo lường khách quan sẹo bỏng
Tóm tắt
Từ khóa
Tài liệu tham khảo
World Health Organisation. Disease and injury regional estimates, 2004-2008. [19th Apr 2016] Available from: http://www.who.int/healthinfo/global_burden_disease/estimates_regional_2004_2008/en/
Global Health Estimates: deaths, disability-adjusted life year (DALYs), years of life lost (YLL) and years lost due to disability (YLD) by cause, age and sex, 2000–2012. Geneva: World Health Organization. [29 Feb 2016]. Available from: http://www.who.int/healthinfo/global_burden_disease/estimates/en/.
Brusselaers N, Hoste EA, Monstrey S, Colpaert KE, De Waele JJ, Vandewoude KH, et al. Outcome and changes over time in survival following severe burns from 1985 to 2004. Intensive Care Med. 2005;31(12):1648–53.
Draaijers LJ, Tempelman FR, Botman YA, Tuinebreijer WE, Middelkoop E, Kreis RW, et al. The patient and observer scar assessment scale: a reliable and feasible tool for scar evaluation. Plast Reconstr Surg. 2004;113(7):1960–5. discussion 6-7.
Brusselaers N, Pirayesh A, Hoeksema H, Verbelen J, Blot S, Monstrey S. Burn scar assessment: a systematic review of different scar scales. The Journal of surgical research. 2010;164(1):e115–23.
Gankande TU, Duke JM, Danielsen PL, DeJong HM, Wood FM, Wallace HJ. Reliability of scar assessments performed with an integrated skin testing device - The DermaLab Combo((R)). Burns : journal of the International Society for Burn Injuries. 2014;40(8):1521–9.
Kaartinen IS, Valisuo PO, Alander JT, Kuokkanen HO. Objective scar assessment--a new method using standardized digital imaging and spectral modelling. Burns : journal of the International Society for Burn Injuries. 2011;37(1):74–81.
Kaartinen IS, Valisuo PO, Bochko V, Alander JT, Kuokkanen HO. How to assess scar hypertrophy--a comparison of subjective scales and Spectrocutometry: a new objective method. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair. Society. 2011;19(3):316–23.
Hoogewerf CJ, van Baar ME, Middelkoop E, van Loey NE. Impact of facial burns: Relationship between depressive symptoms, self-esteem and scar severity. Gen Hosp Psychiatry. 2014;36(3):271–6.
Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.
Alster TS, Lewis AB, Rosenbach A, et al. Laser scar revision: comparison of CO2 laser vaporization with and without simultaneous pulsed dye laser treatment. Dermatologic surgery : official publication for American Society for Dermatologic Surgery. 1998;24(12):1299–302.
Winkler AD, Spillmann L, Werner JS, Webster MA. Asymmetries in blue-yellow color perception and in the color of 'the dress'. Current biology: CB. 2015.
Tseng FY, Chao CJ, Feng WY, Hwang SL. Assessment of human color discrimination based on illuminant color, ambient illumination and screen background color for visual display terminal workers. Ind Health. 2010;48(4):438–46.
Shuwairi SM, Cronin-Golomb A, McCarley RW, O'Donnell BF. Color discrimination in schizophrenia. Schizophr Res. 2002;55(1-2):197–204.
Draaijers LJ, Tempelman FR, Botman YA, Kreis RW, Middelkoop E, van Zuijlen PP. Colour evaluation in scars: tristimulus colorimeter, narrow-band simple reflectance meter or subjective evaluation? Burns : journal of the International Society for Burn Injuries. 2004;30(2):103–7.
Davey RB, Sprod RT, Neild TO. Computerised colour: a technique for the assessment of burn scar hypertrophy. A preliminary report. Burns : journal of the International Society for Burn Injuries. 1999;25(3):207–13.
Li-Tsang CW, Lau JC, Liu SK. Validation of an objective scar pigmentation measurement by using a spectrocolorimeter. Burns : journal of the International Society for Burn Injuries. 2003;29(8):779–84.
Chan HH, Wong DS, Ho WS, Lam LK, Wei W, et al. The use of pulsed dye laser for the prevention and treatment of hypertrophic scars in chinese persons. Dermatologic surgery : official publication for American Society for Dermatologic Surgery. 2004;30(7):987–94. discussion 94.
Kim MS, Rodney WN, Cooper T, Kite C, Reece GP, Markey MK. Towards quantifying the aesthetic outcomes of breast cancer treatment: comparison of clinical photography and colorimetry. J Eval Clin Pract. 2009;15(1):20–31.
van der Wal M, Bloemen M, Verhaegen P, Tuinebreijer W, de Vet H, van Zuijlen P, et al. Objective color measurements: clinimetric performance of three devices on normal skin and scar tissue. Journal of burn care & research : official publication of the American Burn Association. 2013;34(3):e187–94.
Akita S, Akino K, Imaizumi T, Hirano A. A basic fibroblast growth factor improved the quality of skin grafting in burn patients. Burns : journal of the International Society for Burn Injuries. 2005;31(7):855–8.
Ardigò M, Muzio F, Picardo M, Brazzelli V. In: Picardo M, Taïeb A, editors. Non-invasive methods for vitiligo evaluation. London, New York: Springer Heidelberg Dordrecht; 2010.
Yip C. Re-pigmentation of skin following wounding. Manchester, UK: The University of Manchester; 2013.
Barel AO, Clarys P, Alewaeters K, Duez C, Hubinon JL, Mommaerts M. The Visi-Chroma VC-100: a new imaging colorimeter for dermatocosmetic research. Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI). 2001;7(1):24–31.
Hallam MJ, McNaught K, Thomas AN, Nduka C. A practical and objective approach to scar colour assessment. Journal of plastic, reconstructive & aesthetic surgery : JPRAS. 2013;66(10):e271–6.
van der Wal MB, van Zuijlen PP, van de Ven P, Middelkoop E. Topical silicone gel versus placebo in promoting the maturation of burn scars: a randomized controlled trial. Plast Reconstr Surg. 2010;126(2):524–31.
Verhaegen PD, Bloemen MC, van der Wal MB, Vloemans AF, Tempelman FR, Beerthuizen GI, et al. Skin stretching for primary closure of acute burn wounds. Burns: journal of the International Society for Burn Injuries. 2014;40(8):1727–37.
Nedelec B, Correa JA, de Oliveira A, LaSalle L, Perrault I. Longitudinal burn scar quantification. Burns : journal of the International Society for Burn Injuries. 2014;40(8):1504–12.
Oliveira GV, Chinkes D, Mitchell C, Oliveras G, Hawkins HK, Herndon DN, et al. Objective assessment of burn scar vascularity, erythema, pliability, thickness, and planimetry. Dermatologic surgery : official publication for American Society for Dermatologic Surgery. 2005;31(1):48–58.
Nedelec B, Correa JA, Rachelska G, Armour A, LaSalle L. Quantitative measurement of hypertrophic scar: intrarater reliability, sensitivity, and specificity. Journal of burn care & research : official publication of the American Burn Association. 2008;29(3):489–500.
Cheon Y, Lee W, Rah D. Objective analysis of burn scar color by L*a*b* color coordinates. Burns : journal of the International Society for Burn Injuries. 2009;35:S33.
Cheon YW, Lee WJ, Rah DK. Objective and quantitative evaluation of scar color using the L*a*b* color coordinates. The Journal of craniofacial surgery. 2010;21(3):679–84.
Valisuo P, Harju T, Alander J. Reflectance measurement using digital camera and a protecting dome with built in light source. J Biophotonics. 2011;4(7-8):559–64.
Bae EJ, Seo SH, Kye YC, Ahn HH. A quantitative assessment of the human skin surface using polarized light digital photography and its dermatologic significance. Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI). 2010;16(3):270–4.
Khorasani H, Zheng Z, Nguyen C, Zara J, Zhang X, Wang J, et al. A quantitative approach to scar analysis. Am J Pathol. 2011;178(2):621–8.
Ferreira T, Rasband W. ImageJ User Guide — IJ 1.46 2010—2012 [2nd September 2015]. imagej.nih.gov/ij/docs/guide/].
Burke-Smith A, Collier J, Jones I. A comparison of non-invasive imaging modalities: Infrared thermography, spectrophotometric intracutaneous analysis and laser Doppler imaging for the assessment of adult burns. Burns : journal of the International Society for Burn Injuries. 2015.
Jones HG. Clinimetrics of tristimulus colourimeters in scar assessment: a review of evidence. J Wound Care. 2012;21(1):30–5.
Moncrieff M, Cotton S, Claridge E, Hall P. Spectrophotometric intracutaneous analysis: a new technique for imaging pigmented skin lesions. The British journal of dermatology. 2002;146(3):448–57.
Ud-Din S, Perry D, Giddings P, Colthurst J, Zaman K, Cotton S, et al. Electrical stimulation increases blood flow and haemoglobin levels in acute cutaneous wounds without affecting wound closure time: Evidenced by non-invasive assessment of temporal biopsy wounds in human volunteers. Exp Dermatol. 2012;21(10):758–64.
Li ZY, Su HT, Lu SL, Huang LB, Yang XB, Shao TB, et al. [Clinical study on the relationship among the dermis, fat dome and postburn hyperplastic scar formation]. Zhonghua shao shang za zhi = Zhonghua shaoshang zazhi =. Chinese journal of burns. 2004;20(6):343–6.
Wan BK, Qi HZ, Ming D, Zhang MJ, Wang QF. Chromatic analysis of burn scar based on ANN by using photoelectrical technology. In: Chance B, Chen M, Chiou AET, Luo Q, editors. Optics in Health Care and Biomedical Optics: Diagnostics and Treatment Ii, Pts 1 and 2. Proceedings of the Society of Photo-Optical Instrumentation Engineers (Spie). 56302005. 538-43.
Beausang E, Floyd H, Dunn KW, Orton CI, Ferguson MW. A new quantitative scale for clinical scar assessment. Plast Reconstr Surg. 1998;102(6):1954–61.
Powell MW, Sarkar S, Goldgof DB, Ivanov K. A methodology for extracting objective color from images. IEEE transactions on systems, man, and cybernetics Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. 2004;34(5):1964–78.
Anderson JC, Hallam MJ, Nduka C, Osorio D. The challenge of objective scar colour assessment in a clinical setting: using digital photography. J Wound Care. 2015;24(8):379–87.
van Zuijlen PP, Angeles AP, Kreis RW, Bos KE, Middelkoop E. Scar assessment tools: implications for current research. Plast Reconstr Surg. 2002;109(3):1108–22.
Valente JH, Jay GD, Schmidt ST, Oh AK, Reinert SE, Zabbo CP. Digital imaging analysis of scar aesthetics. Adv Skin Wound Care. 2012;25(3):119–23.
Kim DW, Hwang NH, Yoon ES, Dhong ES, Park SH. Outcomes of ablative fractional laser scar treatment. Journal of plastic surgery and hand surgery. 2015;49(2):88–94.
Bray R, Forrester K, Leonard C, McArthur R, Tulip J, Lindsay R. Laser Doppler imaging of burn scars: a comparison of wavelength and scanning methods. Burns : journal of the International Society for Burn Injuries. 2003;29(3):199–206.
Ehrlich HP, Kelley SF. Hypertrophic scar: an interruption in the remodeling of repair--a laser Doppler blood flow study. Plast Reconstr Surg. 1992;90(6):993–8.
Hosoda G, Holloway GA, Heimbach DM. Laser Doppler flowmetry for the early detection of hypertrophic burn scars. The Journal of burn care & rehabilitation. 1986;7(6):496–7.
Musgrave MA, Umraw N, Fish JS, Gomez M, Cartotto RC. The effect of silicone gel sheets on perfusion of hypertrophic burn scars. The Journal of burn care & rehabilitation. 2002;23(3):208–14.
Timar-Banu O, Beauregard H, Tousignant J, Lassonde M, Harris P, Viau G, et al. Development of noninvasive and quantitative methodologies for the assessment of chronic ulcers and scars in humans. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair. Society. 2001;9(2):123–32.
Page RE, Robertson GA, Pettigrew NM. Microcirculation in hypertrophic burn scars. Burns, including thermal injury. 1983;10(1):64–70.
Leung KS, Sher A, Clark JA, Cheng JC, Leung PC. Microcirculation in hypertrophic scars after burn injury. The Journal of burn care & rehabilitation. 1989;10(5):436–44.
Clark JA, Leung KS, Cheng JC, Leung PC. The hypertrophic scar and microcirculation properties. Burns : journal of the International Society for Burn Injuries. 1996;22(6):447–50.
Forrester KR, Tulip J, Leonard C, Stewart C, Bray RC. A laser speckle imaging technique for measuring tissue perfusion. IEEE transactions on bio-medical engineering. 2004;51(11):2074–84.
Wittenberg GP, Fabian BG, Bogomilsky JL, Schultz LR, Rudner EJ, Chaffins ML, et al. Prospective, single-blind, randomized, controlled study to assess the efficacy of the 585-nm flashlamp-pumped pulsed-dye laser and silicone gel sheeting in hypertrophic scar treatment. Arch Dermatol. 1999;135(9):1049–55.
Allely RR, Van-Buendia LB, Jeng JC, White P, Wu J, Niszczak J, et al. Laser Doppler imaging of cutaneous blood flow through transparent face masks: a necessary preamble to computer-controlled rapid prototyping fabrication with submillimeter precision. Journal of burn care & research : official publication of the American Burn Association. 2008;29(1):42–8.
Stewart CJ, Frank R, Forrester KR, Tulip J, Lindsay R, Bray RC. A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging. Burns : journal of the International Society for Burn Injuries. 2005;31(6):744–52.
moorFLPI-2 (Laser speckle contrast imager) [01/04/2015]. Available from: http://us.moor.co.uk/product/moorflpi-2-/291.
Prindeze NJ, Hoffman HA, Ardanuy JG, Zhang J, Carney BC, Moffatt LT, et al. Active Dynamic Thermography is a Sensitive Method for Distinguishing Burn Wound Conversion. Journal of burn care & research : official publication of the American Burn Association. 2015.
Monstrey S, Hoeksema H, Verbelen J, Pirayesh A, Blondeel P. Assessment of burn depth and burn wound healing potential. Burns : journal of the International Society for Burn Injuries. 2008;34(6):761–9.
Hardwicke J, Thomson R, Bamford A, Moiemen N. A pilot evaluation study of high resolution digital thermal imaging in the assessment of burn depth. Burns : journal of the International Society for Burn Injuries. 2013;39(1):76–81.
Coster A, Klein Baltink H, Zilvold G. Thermographic assessment of healed burn wounds. Rays. 1985;10(3):85–8.
Horta R, Nascimento R, Vilas-Boas J, Sousa F, Orvalho V, Silva A, et al. Thermographic analysis of facially burned patients. Burns : journal of the International Society for Burn Injuries. 2015.
Bhedi A, Saxena AK, Gadani R, Patel R. Digital Photography and Transparency-Based Methods for Measuring Wound Surface Area. The Indian Journal of Surgery. 2013;75(2):111–4.
Chang AC, Dearman B, Greenwood JE. A Comparison of Wound Area Measurement Techniques: Visitrak Versus Photography. Eplasty. 2011;11:e18.
Cui J, Zhang J, Wang J, Xu M, Pei YH, Wang T, et al. Effect of topical application with mitomycin C in the management of benign cicatricial airway stenosis. Chung-Hua Chieh Ho Ho Hu Hsi Tsa Chih Chinese Journal of Tuberculosis & Respiratory Diseases. 2012;35(12):901–6.
Sugama J, Matsui Y, Sanada H, Konya C, Okuwa M, Kitagawa A. A study of the efficiency and convenience of an advanced portable Wound Measurement System (VISITRAK). J Clin Nurs. 2007;16(7):1265–9.
van Zuijlen PP, Angeles AP, Suijker MH, Kreis RW, Middelkoop E. Reliability and accuracy of techniques for surface area measurements of wounds and scars. The international journal of lower extremity wounds. 2004;3(1):7–11.
Berman B, Young VL, McAndrews J, et al. Objective Assessment of the Precision, Accuracy, and Reliability of a Measurement Method for Keloid Scar Volume (PARKS Study). Dermatologic surgery: official publication for American Society for Dermatologic Surgery. 2015.
3dMD static systems [2nd September 2015]. Available from: http://www.3dmd.com/#3dmd-products.
Kim JE, Heo YS, Oh TS, Song HJ, Oh CH. The efficacy of cultured autologous fibroblast injection treatment for depressed acne scar and evaluation by stereoimage optical topometer. Journal of Dermatology Conference: 1st Eastern Asia Dermatology Congress, EADC2010 Fukuoka Japan Conference Start. 2010;37:77.
Stekelenburg CM, van der Wal MB, Knol DL, de Vet HC, van Zuijlen PP. Three-dimensional digital stereophotogrammetry: a reliable and valid technique for measuring scar surface area. Plast Reconstr Surg. 2013;132(1):204–11.
Lumenta DB, Kitzinger HB, Selig H, Kamolz LP. Objective quantification of subjective parameters in scars by use of a portable stereophotographic system. Ann Plast Surg. 2011;67(6):641–5.
Tanaka Y, Tsunemi Y, Kawashima M, Tatewaki N, Nishida H. Objective assessment of skin tightening in Asians using a water-filtered near-infrared (1,000-1,800 nm) device with contact-cooling and freezer-stored gel. Clin Cosmet Investig Dermatol. 2013;6:167–76.
Canfield Photography solutions [cited 2015 2nd September]. Available from: http://www.canfieldsci.com/imaging-systems/categories/photography-solutions/.
Tanaka Y. Long-term three-dimensional volumetric assessment of skin tightening using a sharply tapered non-insulated microneedle radiofrequency applicator with novel fractionated pulse mode in asians. Lasers Surg Med. 2015;47(8):626–33.
Urbanová P, Hejna P, Jurda M. Testing photogrammetry-based techniques for three-dimensional surface documentation in forensic pathology. Forensic Sci Int. 2015;250:77–86.
Ardehali B, Nouraei SA, Van Dam H, Dex E, Wood S, Nduka C. Objective assessment of keloid scars with three-dimensional imaging: quantifying response to intralesional steroid therapy. Plastic & Reconstructive Surgery. 2007;119(2):556–61.
Hoeffelin H, Jacquemin D, Defaweux V, Nizet JL. A Methodological Evaluation of Volumetric Measurement Techniques including Three-Dimensional Imaging in Breast Surgery. BioMed Research International. 2014;2014:573249.
Gee Kee EL, Kimble RM, Stockton KA. 3D photography is a reliable burn wound area assessment tool compared to digital planimetry in very young children. Burns : journal of the International Society for Burn Injuries. 2015.
Bowling FL, King L, Fadavi H, Paterson JA, Preece K, Daniel RW, et al. An assessment of the accuracy and usability of a novel optical wound measurement system. Diabetic medicine : a journal of the British Diabetic Association. 2009;26(1):93–6.
Bowling FL, King L, Paterson JA, Hu J, Lipsky BA, Matthews DR, et al. Remote assessment of diabetic foot ulcers using a novel wound imaging system. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair. Society. 2011;19(1):25–30.
Paterson J. Eykona Medical Imaging FAQ. EYK/AA/021rev02 ed.
Lifeviz Mini Technical specifications. Quantificare.
Vectra H1 Technical specifications: Canfield Imaging systems Inc. ; [9th December 2015]. Available from: http://www.canfieldsci.com/imaging-systems/vectra-h1-3d-imaging-system/.
Raytrix Light field/ Plenoptic 3D cameras [cited 2015 2nd September]. Available from: http://www.raytrix.de/produkte/.
Straub J, Kerlin S. Development of a Large, Low-Cost, Instant 3D Scanner. Technologies. 2014;2(2):76.
Pilley MJ, Hitchens C, Rose G, Alexander S, Wimpenny DI. The use of non-contact structured light scanning in burns pressure splint construction. Burns : journal of the International Society for Burn Injuries. 2011;37(7):1168–73.
Kovacs L, Eder M, Hollweck R, Zimmermann A, Settles M, Schneider A, et al. Comparison between breast volume measurement using 3D surface imaging and classical techniques. Breast. 2007;16(2):137–45.
Taylor B, McGrouther DA, Bayat A. Use of a non-contact 3D digitiser to measure the volume of keloid scars: a useful tool for scar assessment. Journal of plastic, reconstructive & aesthetic surgery : JPRAS. 2007;60(1):87–94.
Powers PS, Sarkar S, Goldgof DB, Cruse CW, Tsap LV. Scar assessment: current problems and future solutions. Journal of Burn Care & Rehabilitation. 1999;20(1 Pt 1):54–60. discussion 53.
Haller HL, Dirnberger J, Giretzlehner M, Rodemund C, Kamolz L. "Understanding burns": Research project BurnCase 3D-Overcome the limits of existing methods in burns documentation. Burns : journal of the International Society for Burn Injuries. 2009;35(3):311–7.
Thumfart S, Giretzlehner M, Holler J, Ehrenmuller M, Pfurtscheller K, Haller H, et al. Proportionally correct 3D models of infants, children and adolescents for precise burn size measurement. Hannover, Germany: European Burns Association Congress; 2015.
Wurzer P, Giretzlehner M, Klein D. SY, Haller H. L., Branski L. K., Benjamin N., et al. Burncase 3D software validation study: Burn size measurement accuracy, test-retest reliability and inter-rater reliability. European Burns Association Congress 2015. Hannover, Germany: Annals of Burns and Fire Disasters-Supplement EBA; 2015.
Cheng W, Saing H, Zhou H, Han Y, Peh W, Tam PK. Ultrasound assessment of scald scars in Asian children receiving pressure garment therapy. J Pediatr Surg. 2001;36(3):466–9.
Wang ZY, Zhang J, Lu SL. Objective evaluation of burn and post-surgical scars and the accuracy of subjective scar type judgment. Chin Med J. 2008;121(24):2517–20.
Sawada Y. A method of recording and objective assessment of hypertrophic burn scars. Burns : journal of the International Society for Burn Injuries. 1994;20(1):76–8.
Hambleton J, Shakespeare PG, Pratt BJ. The progress of hypertrophic scars monitored by ultrasound measurements of thickness. Burns : journal of the International Society for Burn Injuries. 1992;18(4):301–7.
Li-Tsang CW, Lau JC, Chan CC. Prevalence of hypertrophic scar formation and its characteristics among the Chinese population. Burns : journal of the International Society for Burn Injuries. 2005;31(5):610–6.
Lau JC, Li-Tsang CW, Zheng YP. Application of tissue ultrasound palpation system (TUPS) in objective scar evaluation. Burns : journal of the International Society for Burn Injuries. 2005;31(4):445–52.
Lai H-yC. Study of pressure effect on hypertrophic scar tissues: The Hong Kong Polytechnic University. 2010.
Lau C-mJ. A prospective randomized clinical trial to compare the effectiveness of pressure therapy, silicone gel sheeting and the combined therapy on post-surgical hypertrophic scar: The Hong Kong Polytechnic University. 2006.
Nedelec B, Correa JA, Rachelska G, Armour A, LaSalle L. Quantitative measurement of hypertrophic scar: interrater reliability and concurrent validity. Journal of burn care & research : official publication of the American Burn Association. 2008;29(3):501–11.
Van den Kerckhove E, Colla C, Van Brussel M. Pressure Therapy: Does it work? Düsseldorf: German Medical Science GMS Publishing House; 2010.
Qui L, Jin X, Kingston PA, Luo X, Ding X. Experimental study on BMSCs transfected by endogene inhibiting hypertrophic scar. Chung-Kuo Hsiu Fu Chung Chien Wai Ko Tsa Chih/Chinese Journal of Reparative & Reconstructive Surgery. 2008;22(2):212–6.
Du YC, Lin CM, Chen YF, Chen CL, Chen T. Implementation of a burn scar assessment system by ultrasound techniques. Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference. 2006;1:2328–31.
Danin A, Georgesco G, Le Touze A, Penaud A, Quignon R, Zakine G. Assessment of burned hands reconstructed with Integra by ultrasonography and elastometry. Burns : journal of the International Society for Burn Injuries. 2012;38(7):998–1004.
Lacarrubba F, Verzi AE, Tedeschi A, Catalfo P, Nasca MR, Micali G. Clinical and ultrasonographic correlation of acne scars. Dermatol Surg. 2013;39(11):1683–8.
Li JQ, Li-Tsang CW, Huang YP, Chen Y, Zheng YP. Detection of changes of scar thickness under mechanical loading using ultrasonic measurement. Burns : journal of the International Society for Burn Injuries. 2013;39(1):89–97.
Zhuang A, Nguyen TA, Naheedy J, Krakowski A. Use of intraoperative high-definition ultrasound to accurately gauge scar thickness and identify intra-scar anatomy during multimodal revision of a hypertrophic burn scar. Lasers Surg Med. 2015;47:54–5.
Katz SM, Frank DH, Leopold GR, Wachtel TL. Objective measurement of hypertrophic burn scar: a preliminary study of tonometry and ultrasonography. Ann Plast Surg. 1985;14(2):121–7.
Zmudzinska M, Czarnecka-Operacz M, Silny W. Principles of dermatologic ultrasound diagnostics. Acta Dermatovenerol Croat. 2008;16(3):126–9.
Wohlrab J, Wohlrab D, Finke R, Fischer M, Marsch WC. Ultrasonographic characterization of burn scars in children. Unfallchirurg. 2000;103(9):754–60.
Van den Kerckhove E, Staes F, Flour M, Stappaerts K, Boeckx W. Reproducibility of repeated measurements on post-burn scars with Dermascan C. Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI). 2003;9(1):81–4.
Nedelec B, Shankowsky HA, Tredget EE. Rating the resolving hypertrophic scar: Comparison of the Vancouver Scar Scale and scar volume. J Burn Care Rehabil. 2000;21(3):205–12.
Qui L, Jin X, Kingston PA, Luo X, Ding X. [Experimental study on BMSCs transfected by endogene inhibiting hypertrophic scar]. Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery. 2008;22(2):212–6.
Cilip CM, Allaf ME, Fried NM. Application of optical coherence tomography and high-frequency ultrasound imaging during noninvasive laser vasectomy. J Biomed Opt. 2012;17(4):046006.
Episcan [cited 2015 January]. Available from: http://www.longportinc.com/about/episcan.html.
Skin scanner DUB [cited 2015 January]. Available from: http://www.eotech-sa.com/Life-science/Systems/DUBSkin-Scanner/Products/t1/r9/i107.
Verhaegen PD, van der Wal MB, Middelkoop E, van Zuijlen PP. Objective scar assessment tools: a clinimetric appraisal. Plast Reconstr Surg. 2011;127(4):1561–70.
Kautzky F, Dahm MW, Drosner M, Köhler LD, Vogt H-J, Borelli S. Direct profilometry of the skin: its reproducibility and variability. J Eur Acad Dermatol Venereol. 1995;5(1):15–23.
Lagarde JM, Rouvrais C, Black D, Diridollou S, Gall Y. Skin topography measurement by interference fringe projection: a technical validation. Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI). 2001;7(2):112–21.
Nardin P, Nita D, Mignot J. Automation of a series of cutaneous topography measurements from silicon rubber replicas. Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI). 2002;8(2):112–7.
Fischer TW, Wigger-Alberti W, Elsner P. Direct and non-direct measurement techniques for analysis of skin surface topography. Skin Pharmacol Appl Ski Physiol. 1999;12(1-2):1–11.
De Paepe K, Lagarde JM, Gall Y, Roseeuw D, Rogiers V. Microrelief of the skin using a light transmission method. Arch Dermatol Res. 2000;292(10):500–10.
Bloemen MC, van Gerven MS, van der Wal MB, Verhaegen PD, Middelkoop E. An objective device for measuring surface roughness of skin and scars. J Am Acad Dermatol. 2011;64(4):706–15.
Barolet D, Boucher A. Prophylactic low-level light therapy for the treatment of hypertrophic scars and keloids: a case series. Lasers Surg Med. 2010;42(6):597–601.
Kottner J, Schario M, Garcia Bartels N, Pantchechnikova E, Hillmann K, Blume-Peytavi U. Comparison of two in vivo measurements for skin surface topography. Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI). 2013;19(2):84–90.
Zhao L, Hung LK, Zhang YT. Electrical properties of normal and scarred skin. In: Chang HK, Zhang YT, editors. Proceedings of the 20th Annual International Conference of the Ieee Engineering in Medicine and Biology Society, Vol 20, Pts 1-6: Biomedical Engineering Towards the Year 2000 and Beyond. Proceedings of Annual International Conference of the Ieee Engineering in Medicine and Biology Society. 201998. p. 2917-20.
Moloney EC, Brunner M, Alexander AJ, Clark J. Quantifying fibrosis in head and neck cancer treatment: An overview. Head and Neck-Journal for the Sciences and Specialties of the Head and Neck. 2015;37(8):1225–31.
Dematte MF, Gemperli R, Salles AG, Dolhnikoff M, Lancas T, Nascimento Saldiva PH, et al. Mechanical evaluation of the resistance and elastance of post-burn scars after topical treatment with tretinoin. Clinics. 2011;66(11):1949–54.
Clark JA, Cheng JC, Leung KS. Mechanical properties of normal skin and hypertrophic scars. Burns : journal of the International Society for Burn Injuries. 1996;22(6):443–6.
Gunner CW, Hutton WC, Burlin TE. The mechanical properties of skin in vivo--a portable hand-held extensometer. The British journal of dermatology. 1979;100(2):161–3.
Lim KH, Chew CM, Chen PC, Jeyapalina S, Ho HN, Rappel JK, et al. New extensometer to measure in vivo uniaxial mechanical properties of human skin. J Biomech. 2008;41(5):931–6.
Thacker JG. lachetta FA, Allaire PE. In vivo extensometer for measurement of the biomechanical properties of human skin. The Review of scientific instruments. 1977;48(2):181–5.
Clark JA, Cheng JC, Leung KS, Leung PC. Mechanical characterisation of human postburn hypertrophic skin during pressure therapy. J Biomech. 1987;20(4):397–406.
Chu BM, Brody G. Nondestructive measurements of the properties of healing burn scars. Medical instrumentation. 1975;9(3):139–42.
Bartell TH, Monafo WW, Mustoe TA. A new instrument for serial measurements of elasticity in hypertrophic scar. J Burn Care Rehabil. 1988;9(6):657–60.
Rennekampff HO, Rabbels J, Reinhard V, Becker ST, Schaller HE. Comparing the Vancouver Scar Scale with the cutometer in the assessment of donor site wounds treated with various dressings in a randomized trial. Journal of burn care & research : official publication of the American Burn Association. 2006;27(3):345–51.
Klosova H, Stetinsky J, Bryjova I, Hledik S, Klein L. Objective evaluation of the effect of autologous platelet concentrate on post-operative scarring in deep burns. Burns : journal of the International Society for Burn Injuries. 2013;39(6):1263–76.
Nguyen DQ, Potokar TS, Price P. An objective long-term evaluation of Integra (a dermal skin substitute) and split thickness skin grafts, in acute burns and reconstructive surgery. Burns : journal of the International Society for Burn Injuries. 2010;36(1):23–8.
Rahmanian-Schwarz A, Beiderwieden A, Willkomm LM, Amr A, Schaller HE, Lotter O. A clinical evaluation of Biobrane((R)) and Suprathel((R)) in acute burns and reconstructive surgery. Burns : journal of the International Society for Burn Injuries. 2011;37(8):1343–8.
Fong SS, Hung LK, Cheng JC. The cutometer and ultrasonography in the assessment of postburn hypertrophic scar--a preliminary study. Burns : journal of the International Society for Burn Injuries. 1997;23 Suppl 1:S12–8.
Draaijers LJ, Botman YA, Tempelman FR, Kreis RW, Middelkoop E, van Zuijlen PP. Skin elasticity meter or subjective evaluation in scars: a reliability assessment. Burns : journal of the International Society for Burn Injuries. 2004;30(2):109–14.
Selig HF, Keck M, Lumenta DB, Mittlbock M, Kamolz LP. The use of a polylactide-based copolymer as a temporary skin substitute in deep dermal burns: 1-year follow-up results of a prospective clinical noninferiority trial. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society. 2013;21(3):402–9.
Sin P, Stupka I, Brychta P. Evaluation and comparison of composite and split-thickness skin grafts using cutometer mpa 580. Annals of burns and fire disasters. 2010;23(4):208–13.
van Zuijlen PP, Vloemans JF, van Trier AJ, Suijker MH, van Unen E, Groenevelt F, et al. Dermal substitution in acute burns and reconstructive surgery: a subjective and objective long-term follow-up. Plast Reconstr Surg. 2001;108(7):1938–46.
Fournier R, Pierard GE. Skin tensile strength modulation by compressive garments in burn patients. A pilot study. Journal of medical engineering & technology. 2000;24(6):277–80.
Krusche T, Worret WI. Mechanical properties of keloids in vivo during treatment with intralesional triamcinolone acetonide. Arch Dermatol Res. 1995;287(3-4):289–93.
Matsuzaki K, Kumagai N, Fukushi S, Ohshima H, Tanabe M, Ishida H. Cultured epithelial autografting on meshed skin graft scars: evaluation of skin elasticity. The Journal of burn care & rehabilitation. 1995;16(5):496–502.
Nguyen NT, Roberge D, Freeman CR, Wong C, Hines J, Turcotte RE. Skin Elasticity as a Measure of Radiation Fibrosis: Is it Reproducible and Does it Correlate with Patient and Physician-reported Measures? Technology in cancer research & treatment. 2013.
Rennekampff HO, Rabbels J, Pfau M. Schaller HE. Kongressband / Deutsche Gesellschaft fur Chirurgie Deutsche Gesellschaft fur Chirurgie Kongress. 2002;119:749–55. Evaluating scar development with objective computer-assisted viscoelastic measurement.
Anthonissen M, Daly D, Fieuws S, Massage P, Van Brussel M, Vranckx J, et al. Measurement of elasticity and transepidermal water loss rate of burn scars with the Dermalab((R)). Burns : journal of the International Society for Burn Injuries. 2013;39(3):420–8.
Spann K, Mileski WJ, Atiles L, Purdue G, Hunt J. The 1996 Clinical Research award. Use of a pneumatonometer in burn scar assessment. The Journal of burn care & rehabilitation. 1996;17(6 Pt 1):515–7.
Lye I, Edgar DW, Wood FM, Carroll S. Tissue tonometry is a simple, objective measure for pliability of burn scar: is it reliable? Journal of burn care & research : official publication of the American Burn Association. 2006;27(1):82–5.
Akita S, Akino K, Yakabe A, Imaizumi T, Tanaka K, Anraku K, et al. Combined surgical excision and radiation therapy for keloid treatment. The Journal of craniofacial surgery. 2007;18(5):1164–9.
Merkel PA, Silliman NP, Denton CP, Furst DE, Khanna D, Emery P, et al. Validity, reliability, and feasibility of durometer measurements of scleroderma skin disease in a multicenter treatment trial. Arthritis Rheum. 2008;59(5):699–705.
Magliaro A, Romanelli M. Skin hardness measurement in hypertrophic scars. Wounds-a Compendium of Clinical Research and Practice. 2003;15(3):66–70.
Esposito G, Ziccardi P, Scioli M, Pappone N, Scuderi N. The use of a modified tonometer in burn scar therapy. The Journal of burn care & rehabilitation. 1990;11(1):86–90.
Wernicke AG, Greenwood EA, Coplowitz S, Parashar B, Kulidzhanov F, Christos PJ, et al. Tissue compliance meter is a more reproducible method of measuring radiation-induced fibrosis than late effects of normal tissue-subjective objective management analytical in patients treated with intracavitary brachytherapy accelerated partial breast irradiation: results of a prospective trial. Breast J. 2013;19(3):250–8.
Corica GF, Wigger NC, Edgar DW, Wood FM, Carroll S. Objective measurement of scarring by multiple assessors: is the tissue tonometer a reliable option? Journal of burn care & research : official publication of the American Burn Association. 2006;27(4):520–3.
Boyce ST, Supp AP, Wickett RR, Hoath SB, Warden GD. Assessment with the dermal torque meter of skin pliability after treatment of burns with cultured skin substitutes. The Journal of burn care & rehabilitation. 2000;21(1 Pt 1):55–63.
McHugh AA, Fowlkes BJ, Maevsky EI, Smith Jr DJ, Rodriguez JL, Garner WL. Biomechanical alterations in normal skin and hypertrophic scar after thermal injury. The Journal of burn care & rehabilitation. 1997;18(2):104–8.
Popovic G, Sarvazyan A, Ponomarjev V, Vucelic D. Method and device for noninvasive acoustic testing of elasticity of soft biological tissues. Google Patents. 1992.
Verhaegen PD, Res EM, van Engelen A, Middelkoop E, van Zuijlen PP. A reliable, non-invasive measurement tool for anisotropy in normal skin and scar tissue. Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI). 2010;16(3):325–31.
Ferriero G, Vercelli S, Salgovic L, Stissi V, Sartorio F. Validation of a new device to measure postsurgical scar adherence. Phys Ther. 2010;90(5):776–83.
Tsap LV, Goldgof DB, Sarkar S, Powers PS. A vision-based technique for objective assessment of burn scars. IEEE Trans Med Imaging. 1998;17(4):620–33.
Zhang Y, Goldgof DB, Sarkar S, Tsap LV. A modeling approach for burn scar assessment using natural features and elastic property. IEEE Trans Med Imaging. 2004;23(10):1325–9.
Larrabee Jr WF. A finite element model of skin deformation. I. Biomechanics of skin and soft tissue: a review. Laryngoscope. 1986;96(4):399–405.
Zhang Y, Goldgof DB, Sarkar S, Tsap LV. Model-based nonrigid motion analysis using natural feature adaptive mesh. In: Sanfeliu A, Villanueva JJ, Vanrell M, Alquezar R, Huang T, Serra J, editors. 15th International Conference on Pattern Recognition, Vol 3, Proceedings: Image, Speech and Signal Processing. International Conference on Pattern Recognition. 2000. p. 831–5.
Palmieri TL, Petuskey K, Bagley A, Takashiba S, Greenhalgh DG, Rab GT. Alterations in functional movement after axillary burn scar contracture: a motion analysis study. The Journal of burn care & rehabilitation. 2003;24(2):104–8.
Parry I, Walker K, Niszczak J, Palmieri T, Greenhalgh D. Methods and tools used for the measurement of burn scar contracture. Journal of burn care & research : official publication of the American Burn Association. 2010;31(6):888–903.
Rab G, Petuskey K, Bagley A. A method for determination of upper extremity kinematics. Gait & posture. 2002;15(2):113–9.
van der Helm FC, Pronk GM. Three-dimensional recording and description of motions of the shoulder mechanism. J Biomech Eng. 1995;117(1):27–40.
Koller R, Kargul G, Giovanoli P, Meissl G, Frey M. Quantification of functional results after facial burns by the faciometer. Burns : journal of the International Society for Burn Injuries. 2000;26(8):716–23.
Berry RB, Tan OT, Cooke ED, Gaylarde PM, Bowcock SA, Lamberty BG, et al. Transcutaneous oxygen tension as an index of maturity in hypertrophic scars treated by compression. Br J Plast Surg. 1985;38(2):163–73.
Ichioka S, Ando T, Shibata M, Sekiya N, Nakatsuka T. Oxygen consumption of keloids and hypertrophic scars. Ann Plast Surg. 2008;60(2):194–7.
Rodrigues LM, Roberto MA. Characterization strategies for the functional assessment of the cutaneous lesion. Burns : journal of the International Society for Burn Injuries. 2006;32(7):797–801.
Fluhr JW, Feingold KR, Elias PM. Transepidermal water loss reflects permeability barrier status: validation in human and rodent in vivo and ex vivo models. Exp Dermatol. 2006;15(7):483–92.
Rosado C, Pinto P, Rodrigues LM. Comparative assessment of the performance of two generations of Tewameter: TM210 and TM300. Int J Cosmet Sci. 2005;27(4):237–41.
De Paepe K, Houben E, Adam R, Wiesemann F, Rogiers V. Validation of the VapoMeter, a closed unventilated chamber system to assess transepidermal water loss vs. the open chamber Tewameter. Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI). 2005;11(1):61–9.
Anthonissen M. Assessment and conservative treatments of burn scars; Evaluatie en conservatieve behandeling van littekens na brandwonden. 2015.
Clarys P, Clijsen R, Taeymans J, Barel AO. Hydration measurements of the stratum corneum: comparison between the capacitance method (digital version of the Corneometer CM 825(R)) and the impedance method (Skicon-200EX(R)). Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI). 2012;18(3):316–23.
O'Goshi K, Serup J. Skin conductance; validation of Skicon-200EX compared to the original model, Skicon-100. Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI). 2007;13(1):13–8.
Magnusson M, Papini RP, Rea SM, Reed CC, Wood FM. Cultured autologous keratinocytes in suspension accelerate epithelial maturation in an in vivo wound model as measured by surface electrical capacitance. Plast Reconstr Surg. 2007;119(2):495–9.
Anthonissen M, Daly D, Peeters R, Van Brussel M, Fieuws S, Moortgat P, et al. Reliability of Repeated Measurements on Post-Burn Scars with Corneometer CM 825. Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI). 2014.
Nuutinen J. Skin dielectric constant at high radiofrequency with special emphasis on radiation-induced late skin reaction [Ph.D. thesis]. Kuopio, Finland: Kuopio University Publications C. Natural and Environmental Sciences 55; 1997.
Lahtinen T, Nuutinen J, Alanen E, Turunen M, Nuortio L, Usenius T, et al. Quantitative assessment of protein content in irradiated human skin. Int J Radiat Oncol Biol Phys. 1999;43(3):635–8.
Suetake T, Sasai S, Zhen YX, Ohi T, Tagami H. Functional analyses of the stratum corneum in scars. Sequential studies after injury and comparison among keloids, hypertrophic scars, and atrophic scars. Arch Dermatol. 1996;132(12):1453–8.
Ghassemi P, Travis TE, Moffatt LT, Shupp JW, Ramella-Roman JC. A polarized multispectral imaging system for quantitative assessment of hypertrophic scars. Biomedical optics express. 2014;5(10):3337–54.
Ghassemi P, Shupp JW, Moffatt LT, Ramella-Roman JC. A Novel Spectral Imaging System for Quantitative Analysis of Hypertrophic Scar. In: Kollias N, Choi B, Zeng H, Kang HW, Knudsen BE, Wong BJF, et al., editors. Photonic Therapeutics and Diagnostics Ix. Proceedings of SPIE. 85652013.
Drexler W, Fujimoto JG. State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res. 2008;27(1):45–88.
Alex A, Povazay B, Hofer B, Popov S, Glittenberg C, Binder S, et al. Multispectral in vivo three-dimensional optical coherence tomography of human skin. J Biomed Opt. 2010;15(2):026025.
Welzel J, Lankenau E, Birngruber R, Engelhardt R. Optical coherence tomography of the human skin. J Am Acad Dermatol. 1997;37(6):958–63.
Gambichler T, Moussa G, Sand M, Sand D, Altmeyer P, Hoffmann K. Applications of optical coherence tomography in dermatology. J Dermatol Sci. 2005;40(2):85–94.
Welzel J. Optical coherence tomography in dermatology: a review. Skin research and technology: official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI). 2001;7(1):1–9.
Steiner R, Kunzi-Rapp K, Scharffetter-Kochanek K. Optical Coherence Tomography: Clinical Applications in Dermatology. Medical Laser Application. 2003;18(3):249–59.
Liew YM, McLaughlin RA, Gong P, Wood FM, Sampson DD. In vivo assessment of human burn scars through automated quantification of vascularity using optical coherence tomography. J Biomed Opt. 2013;18(6):061213.
Gong P, Chin L, Es'haghian S, Liew YM, Wood FM, Sampson DD, et al. Imaging of skin birefringence for human scar assessment using polarization-sensitive optical coherence tomography aided by vascular masking. J Biomed Opt. 2014;19(12):126014.
Gong P, McLaughlin RA, Liew YM, Munro PR, Wood FM, Sampson DD. Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking. J Biomed Opt. 2014;19(2):21111.
Babalola O, Mamalis A, Lev-Tov H, Jagdeo J. Optical coherence tomography (OCT) of collagen in normal skin and skin fibrosis. Arch Dermatol Res. 2014;306(1):1–9.
Choi WJ, Reif R, Yousefi S, Wang RK. Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask. J Biomed Opt. 2014;19(3):36010.
Wang XQ, Mill J, Kravchuk O, Kimble RM. Ultrasound assessed thickness of burn scars in association with laser Doppler imaging determined depth of burns in paediatric patients. Burns : journal of the International Society for Burn Injuries. 2010;36(8):1254–62.
Lo WC, Villiger M, Golberg A, Broelsch GF, Khan S, Lian CG, et al. Longitudinal, 3D In Vivo Imaging of Collagen Remodeling in Murine Hypertrophic Scars using Polarization-sensitive Optical Frequency Domain Imaging. The Journal of investigative dermatology. 2015.
Eraud J, Gonnelli D, Carmassi M, Bruzzese L, Andrac-Meyer L, Casanova D, et al. Differential diagnosis between keloid and hypertrophic scars: a new approach by full-field optical coherence tomography. Ann Chir Plast Esthet. 2014;59(4):253–60.
Moshref SS, Mufti ST. Keloid and hypertrophic scars: comparative histopathological and immunohistochemical study. Med Sci. 2010;17:3–22.
Chen G, Chen J, Zhuo S, Xiong S, Zeng H, Jiang X, et al. Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation. The British journal of dermatology. 2009;161(1):48–55.
Chen J, Zhuo S, Jiang X, Zhu X, Zheng L, Xie S, et al. Multiphoton microscopy study of the morphological and quantity changes of collagen and elastic fiber components in keloid disease. J Biomed Opt. 2011;16(5):051305.
Brewer MB, Yeh A, Torkian B, Sun CH, Tromberg BJ, Wong BJ. Multiphoton imaging of excised normal skin and keloid scar: preliminary investigations. In: Bartels KE, Bass LS, DeRiese WTW, Gregory KW, Hirschberg H, Katzir A, et al., editors. Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems Xiv. Proceedings of the Society of Photo-Optical Instrumentation Engineers (Spie). 53122004. p. 204-8.
Chen A, Liu PY, McNeilly C, Cuttle L, Kempf M, Kendall M, et al. Collagen deposition assessment in burn scar tissue using second harmonic generation and multi-photon microscopy. J Investig Dermatol. 2010;130:S16–S.
Stoller P, Celliers PM, Reiser KM, Rubenchik AM. Imaging collagen orientation using polarization-modulated second harmonic generation. In: Periasamy A, So PTC, editors. Multiphoton Microscopy in the Biomedical Sciences Ii. Proceedings of the Society of Photo-Optical Instrumentation Engineers (Spie). 46202002. p. 157-65.
Kelf TA, Gosnell M, Sandnes B, Guller AE, Shekhter AB, Zvyagin AV. Scar tissue classification using nonlinear optical microscopy and discriminant analysis. J Biophotonics. 2012;5(2):159–67.
Da Costa V, Wei R, Lim R, Sun CH, Brown JJ, Wong BJ. Nondestructive imaging of live human keloid and facial tissue using multiphoton microscopy. Arch Facial Plast Surg. 2008;10(1):38–43.
Zhu XQ, Zhuo SM, Zheng LQ, Lu KC, Jiang XS, Chen JX, et al. Quantified characterization of human cutaneous normal scar using multiphoton microscopy. J Biophotonics. 2010;3(1-2):108–16.
de Vries HJ, Enomoto DN, van Marle J, van Zuijlen PP, Mekkes JR, Bos JD. Dermal organization in scleroderma: the fast Fourier transform and the laser scatter method objectify fibrosis in nonlesional as well as lesional skin. Laboratory investigation; a journal of technical methods and pathology. 2000;80(8):1281–9.
Konig K, Riemann I. High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution. J Biomed Opt. 2003;8(3):432–9.
Chen ACH, McNeilly C, Liu APY, Flaim CJ, Cuttle L, Kendall M, et al. Second harmonic generation and multiphoton microscopic detection of collagen without the need for species specific antibodies. Burns : journal of the International Society for Burn Injuries. 2011;37(6):1001–9.
Jiang Y, Tong Y, Xiao T, Lu S. Phase-contrast microtomography with synchrotron radiation technology: a new noninvasive technique to analyze the three-dimensional structure of dermal tissues. Dermatology. 2012;225(1):75–80.
Theer P, Hasan MT, Denk W. Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt Lett. 2003;28(12):1022–4.
Tseng SH, Hsu CK, Yu-Yun Lee J, Tzeng SY, Chen WR, Liaw YK. Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study. J Biomed Opt. 2012;17(7):077005.
Rajadhyaksha M, Gonzalez S, Zavislan JM, Anderson RR, Webb RH. In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology. The Journal of investigative dermatology. 1999;113(3):293–303.
Rolfe H, Wurm E, Gilmore S. An investigation of striae distensae using reflectance confocal microscopy. The Australasian journal of dermatology. 2012;53(3):181–5.
Nehal KS, Gareau D, Rajadhyaksha M. Skin imaging with reflectance confocal microscopy. Seminars in cutaneous medicine and surgery. 2008;27(1):37–43.
Chang SK, Mirabal YN, Atkinson EN, Cox D, Malpica A, Follen M, et al. Combined reflectance and fluorescence spectroscopy for in vivo detection of cervical pre-cancer. J Biomed Opt. 2005;10(2):024031.
Gisquet H, Liu H, Blondel WC, Leroux A, Latarche C, Merlin JL, et al. Intradermal tacrolimus prevent scar hypertrophy in a rabbit ear model: a clinical, histological and spectroscopical analysis. Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI). 2011;17(2):160–6.
Liu HH, Gisquet H, Guillemin F, Blondel W. Bimodal spectroscopy for in vivo characterization of hypertrophic skin tissue: pre-clinical experimentation, spectral data selection and classification. In: Ramanujam N, Popp J, editors. Clinical and Biomedical Spectroscopy and Imaging Ii. Proceedings of SPIE. 80872011.
Hsu CK, Tzeng SY, Yang CC, Lee JY, Huang LL, Chen WR, et al. Non-invasive evaluation of therapeutic response in keloid scar using diffuse reflectance spectroscopy. Biomedical optics express. 2015;6(2):390–404.
Bessonart MN, Macedo N, Carmona C. High resolution B-scan ultrasound of hypertrophic scars. Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI). 2005;11(3):185–8.
Gangemi EN, Carnino R, Stella M. Videocapillaroscopy in postburn scars: in vivo analysis of the microcirculation. Burns : journal of the International Society for Burn Injuries. 2010;36(6):799–805.
Campanati A, Savelli A, Sandroni L, Marconi B, Giuliano A, Giuliodori K, et al. Effect of allium cepa-allantoin-pentaglycan gel on skin hypertrophic scars: clinical and video-capillaroscopic results of an open-label, controlled, nonrandomized clinical trial. Dermatologic surgery : official publication for American Society for Dermatologic Surgery. 2010;36(9):1439–44.
Pasqui AL, Pastorelli M, Puccetti L, Beerman U, Biagi F, Camarri A, et al. Microvascular assessment in Behcet disease: videocapillaroscopic study. Int J Tissue React. 2003;25(3):105–15.
Hern S, Mortimer PS. In vivo quantification of microvessels in clinically uninvolved psoriatic skin and in normal skin. The British journal of dermatology. 2007;156(6):1224–9.
Lamah M, Chaudhry H, Mortimer PS, Dormandy JA. Repeatability of intravital capillaroscopic measurement of capillary density. International journal of microcirculation, clinical and experimental / sponsored by the European Society for Microcirculation. 1996;16(1):23–9.
Yoo MG, Kim IH. Keloids and hypertrophic scars: characteristic vascular structures visualized by using dermoscopy. Ann. 2014;26(5):603–9.
Wei Y, Li-Tsang CW, Luk DC, Tan T, Zhang W, Chiu TW. A validation study of scar vascularity and pigmentation assessment using dermoscopy. Burns : journal of the International Society for Burn Injuries. 2015;41(8):1717–23.
Malenfant A, Forget R, Papillon J, Amsel R, Frigon JY, Choiniere M. Prevalence and characteristics of chronic sensory problems in burn patients. Pain. 1996;67(2-3):493–500.
Brown JE, Chatterjee N, Younger J, Mackey S. Towards a physiology-based measure of pain: patterns of human brain activity distinguish painful from non-painful thermal stimulation. PLoS One. 2011;6(9):e24124.
Meirte J, Moortgat P, Truijen S, Maertens K, Lafaire C, De Cuyper L, et al. Interrater and intrarater reliability of the Semmes Weinstein aesthesiometer to assess touch pressure threshold in burn scars. Burns : journal of the International Society for Burn Injuries. 2015.
Tena BB. Evaluación y prevención de la cronificación del dolor postoperatorio tras toracotomía: Universitat de Barcelona. 2014.
Tena B, Escobar B, Arguis MJ, Cantero C, Rios J, Gomar C. Reproducibility of Electronic Von Frey and Von Frey monofilaments testing. The Clinical journal of pain. 2012;28(4):318–23.
Perry DM, McGrouther DA, Bayat A. Current tools for noninvasive objective assessment of skin scars. Plast Reconstr Surg. 2010;126(3):912–23.
Brandt MG, Moore CC, Micomonaco D, Fung K, Franklin JH, Yoo J, et al. A Prospective randomized evaluation of scar assessment measures. Laryngoscope. 2009;119(5):841–5.
Niyaz A, Matsumura H, Watanabe K, Hamamoto T, Matsusawa T. Quantification of the physical properties of keloid and hypertrophic scars using the Vesmeter novel sensing device. Int Wound J. 2012;9(6):643–9.
Gankande U, Duke J, Wood F, Danielsen PL, Wallace HEVIDENCE-BASEDRECOMMENDATIONSFORBURNSCARASSESSMENT. Wound Repair Regen. 2015;23(4):A8–9.
Gankande TU, Duke JM, Wood FM, Wallace HJ. Interpretation of the DermaLab Combo((R)) pigmentation and vascularity measurements in burn scar assessment: An exploratory analysis. Burns : journal of the International Society for Burn Injuries. 2015;41(6):1176–85.
Singer AJ, Thode Jr HC, McClain SA. Development of a histomorphologic scale to quantify cutaneous scars after burns. Acad Emerg Med. 2000;7(10):1083–8.
de Rigal J, Abella ML, Giron F, Caisey L, Lefebvre MA. Development and validation of a new Skin Color Chart. Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI). 2007;13(1):101–9.
Bloemen MC, van Leeuwen MC, van Vucht NE, van Zuijlen PP, Middelkoop E. Dermal substitution in acute burns and reconstructive surgery: a 12-year follow-up. Plast Reconstr Surg. 2010;125(5):1450–9.
Blome-Eberwein SA, Roarabaugh C, Gogal C, Eid S. Exploration of nonsurgical scar modification options: can the irregular surface of matured mesh graft scars be smoothed with microdermabrasion? Journal of burn care & research : official publication of the American Burn Association. 2012;33(3):e133–40.
Atiyeh BS, Gunn SW, Hayek SN. State of the art in burn treatment. World J Surg. 2005;29(2):131–48.
Hoeksema H, Van de Sijpe K, Tondu T, Hamdi M, Van Landuyt K, Blondeel P, et al. Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn. Burns : journal of the International Society for Burn Injuries. 2009;35(1):36–45.
Miller RH, Sim I. Physicians' use of electronic medical records: barriers and solutions. Health affairs (Project Hope). 2004;23(2):116–26.
Tzou CH, Artner NM, Pona I, Hold A, Placheta E, Kropatsch WG, et al. Comparison of three-dimensional surface-imaging systems. Journal of plastic, reconstructive & aesthetic surgery : JPRAS. 2014;67(4):489–97.
Dobrev H. Application of Cutometer area parameters for the study of human skin fatigue. Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI). 2005;11(2):120–2.