A systematic review of algorithm aversion in augmented decision making

Journal of Behavioral Decision Making - Tập 33 Số 2 - Trang 220-239 - 2020
Jason W. Burton1, Mari‐Klara Stein2, Tina Blegind Jensen2
1Department of Psychological Sciences, Birkbeck, University of London, London, UK
2Department of Digitalization, Copenhagen Business School, Frederiksberg, Denmark

Tóm tắt

AbstractDespite abundant literature theorizing societal implications of algorithmic decision making, relatively little is known about the conditions that lead to the acceptance or rejection of algorithmically generated insights by individual users of decision aids. More specifically, recent findings of algorithm aversion—the reluctance of human forecasters to use superior but imperfect algorithms—raise questions about whether joint human‐algorithm decision making is feasible in practice. In this paper, we systematically review the topic of algorithm aversion as it appears in 61 peer‐reviewed articles between 1950 and 2018 and follow its conceptual trail across disciplines. We categorize and report on the proposed causes and solutions of algorithm aversion in five themes: expectations and expertise, decision autonomy, incentivization, cognitive compatibility, and divergent rationalities. Although each of the presented themes addresses distinct features of an algorithmic decision aid, human users of the decision aid, and/or the decision making environment, apparent interdependencies are highlighted. We conclude that resolving algorithm aversion requires an updated research program with an emphasis on theory integration. We provide a number of empirical questions that can be immediately carried forth by the behavioral decision making community.

Từ khóa


Tài liệu tham khảo

10.1287/mnsc.27.11.1309

10.1016/j.chb.2018.07.026

10.1016/0749-5978(86)90046-4

Arkes H. R., 2016, How bad is incoherence?, American Psychological Association, 3, 20

10.1177/0272989X06297391

10.2307/41165779

10.2307/2491253

10.1016/0749-5978(92)90040-E

10.2307/248940

10.1109/TSMC.1982.4308848

Bourdieu P., 1993, The Field of Cultural Production

International Journal of Law and Information Technology 2019 27 Do algorithms rule the world? Algorithmic decision‐making and data protection in the framework of the GDPR and beyond.

Brown D. L., 1998, Factors that influence reliance on decision aids: A model and an experiment, Journal of Information Systems, 12, 75

10.1016/0001-6918(92)90039-G

10.1016/j.jarmac.2015.07.005

10.1016/j.joep.2018.02.002

10.1016/0030-5073(81)90031-3

Carey J. M., 2003, Toward a general theoretical model of computerbased factors that affect managerial decision making, Journal of Managerial Issues, 15, 430

10.1080/08870440310001652641

10.1111/j.1754-9434.2008.00062.x

10.1177/2053951717718855

10.1111/j.1754-9434.2008.00060.x

10.1007/s13347-015-0211-1

10.1037/0003-066X.34.7.571

10.1037/xge0000033

10.1287/mnsc.2016.2643

10.1002/bdm.741

10.1016/0030-5073(72)90009-8

10.1207/s15327752jpa5003_8

Eining M. M., 1997, Reliance on decision aids: An examination of auditors' assessment of management fraud, Auditing: A Journal of Practice & Theory, 16, 1

10.1207/s15327752jpa5003_8

10.1016/0167-9236(88)90022-X

10.1111/j.1754-9434.2008.00065.x

10.1016/B0-08-043076-7/01612-0

Gigerenzer G., 1999, Fast and frugal heuristics: The Adaptive toolbox, Simple Heuristics That Make Us Smart., 7, 93

Goodman B., 2016, European Union Regulations on Algorithmic Decision‐Making and a “Right to Explanation”, ArXiv Preprint, 38, 1

10.1080/17470919.2016.1205131

Goodyear K., 2016, Advice Taking from Humans and Machines: An fMRI and effective connectivity study, Frontiers in Human Neuroscience, 10, 1

10.1080/07421222.1986.11517764

10.1037/1076-8971.2.2.293

10.1016/j.jarmac.2016.04.011

10.1038/s41558-019-0474-0

10.1177/1745691617702496

Hertwig R., 2013, Simple heuristics in a social world

10.1111/j.1754-9434.2008.00069.x

10.1111/j.1754-9434.2008.00058.x

10.2307/249572

10.1016/j.bushor.2018.03.007

10.1207/s15327663jcp0404_01

Kahneman D.(2003).A perspective on judgment and choice: Mapping bounded rationality.American Psychologist 58(9) 697–720.https://doi.org/10.1037/0003-066X.58.9.697

Kahneman D., 2011, Thinking, Fast and Slow

10.1017/CBO9780511809477

10.1037/0033-2909.107.3.296

10.1111/j.1754-9434.2008.00061.x

10.1111/j.1754-9434.2008.00059.x

10.2307/248891

10.1093/oxfordjournals.jpart.a024336

10.1016/0167-9236(95)00009-7

10.1108/02683941111138985

10.1016/j.obhdp.2018.12.005

10.1287/isre.3.2.150

10.1111/j.1754-9434.2008.00063.x

Meehl P. E.(1954). Clinical vs. statistical prediction: A theoretical analysis and a review of the evidence.

10.1518/155723410X12849346788822

10.1016/0747-5632(94)90057-4

10.1016/0020-7373(91)90022-Y

10.1016/S0020-7373(87)80013-5

10.1111/j.1754-9434.2008.00067.x

10.1111/j.1754-9434.2008.00066.x

O'Neil C., 2016, Weapons of math destruction: How big data increases inequality and threatens democracy

10.1002/bdm.637

10.1002/wat2.1163

10.4159/harvard.9780674736061

10.1177/0018720816659796

10.1111/j.1754-9434.2008.00064.x

Phillips N. D., 2017, FFTrees: A toolbox to create, visualize, and evaluate fast‐and‐frugal decision trees, Judgment and Decision Making, 12, 344, 10.1017/S1930297500006239

10.1007/1-84628-231-4_2

10.1002/for.2464

10.1017/S0140525X00076512

Rabinowitz N. C. Perbet F. Song H. F. Zhang C. Eslami S. M. A. &Botvinick M.(2018).machine theory of mind.ArXiv Preprint. Retrieved fromhttp://arxiv.org/abs/1802.07740

10.2307/249570

10.2307/249571

10.2307/249283

10.1109/TSMC.1981.4308761

10.2307/249275

10.1037/h0023624

10.1037/hea0000203

10.1002/bdm.486

Simon H., 1977, The new science of management decision making

10.1145/2905370

10.1002/(SICI)1099-1174(199909)8:3<199::AID-ISAF160>3.0.CO;2-A

Tetlock P., 1985, Accountability: The neglected social context of judgment and choice, Research in Organizational Behavior, 7, 297

Thaler R. H. &Sunstein C. R.(2008). Nudge: Improving decisions about health wealth and happiness. Penguin.

10.1111/j.1754-9434.2008.00068.x

10.1111/j.1467-8721.2007.00497.x

10.1109/THMS.2015.2482480

Whitecotton S. M., 1996, The effects of experience and confidence on decision aid reliance: A causal model, Behavioral Research in Accounting, 8, 194

Winfield A. F. T., 2018, Experiments in artificial theory of mind: From safety to story‐telling, Frontiers in Robotics and AI, 5, 1

Yeomans M., 2019, Making sense of recommendations, Journal of Behavioral Decision Making, 1