A systematic investigation of optimal carrier-phase combinations for modernized triple-frequency GPS

Journal of Geodesy - Tập 82 Số 9 - Trang 555-564 - 2008
Marc Cocard1, Stéphanie Bourgon1, Omid Kamali1, Paul Collins2
1Center for Research in Geomatics, Laval University, Quebec City, Canada
2Geodetic Survey Division, Natural Resources Canada, Ottawa, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Blewitt G (1989) Carrier phase ambiguity resolution for the GPS applied to geodetic baselines up to 2000 km. J Geophys Res 94(B8): 10187–10203

Braasch MS, Van Dierendonck AJ (1999) GPS receiver architectures and measurements. Proc IEEE 87(1): 48–64

Cocard M, Geiger A (1992) Systematic search for all possible widelanes. In: Proceedings of the sixth international geodetic symposium on satellite positioning, Columbus, pp 312–318

Collins JP (1999) An overview of GPS inter-frequency carrier phase combinations. Unpublished paper, retrieved May 25, 2007 from: http://gauss.gge.unb.ca/papers.pdf/L1L2combinations.collins.pdf

Feng Y, Rizos C (2005) Three carrier approaches for future global, regional and local GNSS positioning services: concepts and performance perspectives. In: Proceedings of ION-GNSS 2005, Long Beach, pp 2277–2287

Han S, Rizos C (1999) The impact of two additional civilian GPS frequencies on ambiguity resolution strategies. In: Proceedings of ION-AM1999, Cambridge, pp 315–321

Harris RA (1997) Direct resolution of carrier-phase ambiguity by ‘bridging the wavelength gap’. ESA Publication “TST/60107/RAH/Word”

Jung J, Enge P, Pervan B (2000) Optimization of cascade integer resolution with three civil GPS frequencies. In: Proceedings of ION-GPS2000, Salt Lake City, pp 2191–2200

Mordell LJ (1969) Diophantine equations. Academic, New York

Odijk D (2003) Ionosphere-free phase combinations for modernized GPS. J Surv Eng 129(4):165–173. doi: 10.1061/(ASCE)0733-9453(2003)129:4(165)

Richert T, El-Sheimy N (2007) Optimal linear combinations of triple-frequency carrier phase data from future global navigation satellite systems. GPS Solut 11(1):11–19. doi: 10.1007/s10291-006-0024-x

Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity resolution. J Geod 70: 65–82

Teunissen PJG (1995b) The invertible GPS ambiguity transformations. Manuscripta Geodaetica 20(6): 489–497

Teunissen PJG (1999) An optimality property of the integer least-squares esrtimator. J Geodesy 73: 587–593

Teunissen PJG (2001) GNSS ambiguity bootstrapping: theory and applications. In: Proceedings of internetional symposium on kinematic systems in geodesy, geomatics and navigation (KIS2001), pp 246–254

Teunissen PJG, Odijk D (2003) Rank defect integer estimation and phase-only modernized GPS ambiguity resolution. J Geod 76:523–535. doi: 10.1007/s00190-002-0285-2

Teunissen PJG, Joosten P, Tiberius C (2002) A comparison of TCAR, CIR and LAMBDA GNSS ambiguity resolution. In: Proceedings of the 15th international technical meeting of the satellite division of the institute of navigation (ION GPS’02), Portland, pp 2799–2808

Verhagen S, Joosten P (2004) Analysis of integer ambiguity resolution algorithms. In: Proceedings of the European navigation conference, GNSS 2004 merging science and application, 16–19 May, Rotterdam, 11 p, and Eur J Navig 2(4):38–50