A systematic analysis of a mi-RNA inter-pathway regulatory motif
Tóm tắt
The continuing discovery of new types and functions of small non-coding RNAs is suggesting the presence of regulatory mechanisms far more complex than the ones currently used to study and design Gene Regulatory Networks. Just focusing on the roles of micro RNAs (miRNAs), they have been found to be part of several intra-pathway regulatory motifs. However, inter-pathway regulatory mechanisms have been often neglected and require further investigation. In this paper we present the result of a systems biology study aimed at analyzing a high-level inter-pathway regulatory motif called Pathway Protection Loop, not previously described, in which miRNAs seem to play a crucial role in the successful behavior and activation of a pathway. Through the automatic analysis of a large set of public available databases, we found statistical evidence that this inter-pathway regulatory motif is very common in several classes of KEGG Homo Sapiens pathways and concurs in creating a complex regulatory network involving several pathways connected by this specific motif. The role of this motif seems also confirmed by a deeper review of other research activities on selected representative pathways. Although previous studies suggested transcriptional regulation mechanism at the pathway level such as the Pathway Protection Loop, a high-level analysis like the one proposed in this paper is still missing. The understanding of higher-level regulatory motifs could, as instance, lead to new approaches in the identification of therapeutic targets because it could unveil new and “indirect” paths to activate or silence a target pathway. However, a lot of work still needs to be done to better uncover this high-level inter-pathway regulation including enlarging the analysis to other small non-coding RNA molecules.
Tài liệu tham khảo
Alon U: Biological networks: the tinkerer as an engineer. Science. 2003, 301 (5641): 1866-1867. 10.1126/science.1089072.
AL B ́a, Oltvai ZN: Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004, 5 (2): 101-113. 10.1038/nrg1272.
Emmert-Streib F, Glazko GV: Pathway analysis of expression data: deciphering functional building blocks of complex diseases. PLoS Comput Biol. 2011, 7 (5): e1002053-10.1371/journal.pcbi.1002053. doi:10.1371/journal.pcbi.1002053
Kelder T, Van Iersel MP, Hanspers K, Kutmon M, Conklin BR, Evelo CT, Pico AR: WikiPathways: building research communities on biological pathways. Nucleic Acids Res. 2012, 40 (Database issue): D1301-D1307.
WikiPathways Database. [Online] http://www.wikipathways.org/ 2012
Ingenuity Systems: Ingenuity Database. [Online] http://www.ingenuity.com 2012
Kanehisa M, Goto S: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28: 27-30. 10.1093/nar/28.1.27.
Kanehisa Laboratories: KEGG Database. 2012, [Online] http://www.genome.jp/kegg/pathway.html
Cheng C, Yan KK, Hwang W, Qian J, Bhardwaj N, Rozowsky J, Lu ZJ, Niu W, Alves P, Kato M, Snyder M, Gerstein M: Construction and analysis of an integrated regulatory network derived from high- throughput sequencing data. PLoS Comput Biol. 2011, 7: e1002190-10.1371/journal.pcbi.1002190.
Kaplan S, Bren A, Dekel E, Alon U: The incoherent feed-forward loop can generate non-monotonic input functions for genes. Mol Syst Biol. 2008, 4: 203-
Knabe JF, Nehaniv CL, Schilstra MJ: Do motifs reflect evolved function?–No convergent evolution of genetic regulatory network subgraph topologies. BioSystems. 2008, 94: 68-74. 10.1016/j.biosystems.2008.05.012.
Konagurthu AS, Lesk AM: Single and multiple input modules in regulatory networks. Proteins. 2008, 73: 320-324. 10.1002/prot.22053.
Maeda YT, Sano M: Regulatory dynamics of synthetic gene networks with positive feedback. J Mol Biol. 2006, 359: 1107-1124. 10.1016/j.jmb.2006.03.064.
Ma HW, Kumar B, Ditges U, Gunzer F, Buer J, Zeng AP: An extended transcriptional regulatory network of Escherichia coli and analysis of its hierarchical structure and network motifs. Nucleic Acids Res. 2004, 32: 6643-6649. 10.1093/nar/gkh1009.
Zaslaver A, Mayo AE, Rosenberg R, Bashkin P, Sberro H, Tsalyuk M, Surette MG, Alon U: Just-in-time transcription program in metabolic pathways. Nat Genet. 2004, 36: 486-491. 10.1038/ng1348.
Mangan S, Zaslaver A, Alon U: The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. J Mol Biol. 2003, 334: 197-204. 10.1016/j.jmb.2003.09.049.
Shen-Orr SS, Milo R, Mangan S, Alon U: Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet. 2002, 31: 64-68. 10.1038/ng881.
Kalir S, McClure J, Pabbaraju K, Southward C, Ronen M, Leibler S, Surette MG, Alon U: Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science. 2001, 292 (5524): 2080-2083. 10.1126/science.1058758.
Beezhold K, Castranova V, Chen F: Microprocessor of microRNAs: regulation and potential for ther- apeutic intervention. Mol Cancer. 2010, 9: 134-
Tu K, Yu H, Hua Y, Li Y, Liu L, Xie L, Li Y: Combinatorial network of primary and secondary microRNA-driven regulatory mechanisms. Nucleic Acids Res. 2009, 37: 5969-5980. 10.1093/nar/gkp638.
Yuan X, Liu C, Yang P, He S, Liao Q, Kang S, Zhao Y: Clustered microRNAs’ coordination in regulating protein-protein interaction network. BMC Syst Biol. 2009, 3: 65-10.1186/1752-0509-3-65.
Benso A, Di Carlo S, Politano G, Savino A: A new miRNA motif protects pathways’ expression in gene regulatory networks. Proceedings IWBBIO 2013: International Work-Conference on Bioinformatics and Biomedical Engineering. 2013, Granada 18014, Spain: Copicentro Granada S L, AV Andalucia, 38, Granada, 377-384.
Kim W, Li M, Wang J, Pan Y: Biological network motif detection and evaluation. BMC Syst Biol. 2011, 5 (Suppl 3): S5-10.1186/1752-0509-5-S3-S5.
Wang J, Lu M, Qiu C, Cui Q: TransmiR: a transcription factor–microRNA regulation database. Nucleic Acids Res. 2010, 38 (suppl 1): D119-D122.
Schotte D, Chau J, Sylvester G, Liu G, Chen C, van der Velden V, Broekhuis M, Peters T, Pieters R, Den Boer M: Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia. 2008, 23 (2): 313-322.
Oldford S, Robb J, Codner D, Gadag V, Watson P, Drover S: Tumor cell expression of HLA-DM associates with a Th1 profile and predicts improved survival in breast carcinoma patients. Int Immunol. 2006, 18 (11): 1591-1602. 10.1093/intimm/dxl092.
Nagasaki M, Saito A, Doi A, Matsuno H, Miyano S: Using cell illustrator and pathway databases. Foundations of Systems Biology. 2009, : Volume 13 of Computational Biology, Springer, 5-18. ISBN 978-1-84882-022-7
Sanger Institute: Sanger GeneCode database. 2012, [Online] ftp://ftp.sanger.ac.uk/pub/gencode/release_9/genecode.v9.annotation.gtf.gz
Development Core Team: R: A Language and Environment for Statistical Computing. 2010, Vienna, Austria: R Foundation for Statistical Computing, http://www.R-project.org. [ISBN 3-900051-07-0]
Holm S: A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics. 1979, 6 (2): 65-70. doi:10.2307/4615733
Shirdel EA, Xie W, Mak TW, Jurisica I: NAViGaTing the micronome–using multiple microRNA prediction databases to identify signalling pathway-associated microRNAs. PLoS ONE. 2011, 6 (2): e17429-10.1371/journal.pone.0017429.
Kruskal WH, Wallis WA: Use of Ranks in One-Criterion Variance Analysis. J Am Stat Assoc. 1952, 47 (260): 583-621. 10.1080/01621459.1952.10483441. [http://dx.doi.org/10.2307/2280779]
Hay N, Sonenberg N: Upstream and downstream of mTOR. Genes Dev. 2004, 18 (16): 1926-1945. 10.1101/gad.1212704.
Tokunaga C, Yoshino K, Yonezawa K: mTOR integrates amino acid and energy-sensing pathways. Biochem Biophys Res Commun. 2004, 313 (2): 443-446. 10.1016/j.bbrc.2003.07.019.
Easton JB, Houghton PJ: mTOR and cancer therapy. Oncogene. 2006, 25 (48): 6436-6446. 10.1038/sj.onc.1209886.
Faivre S, Kroemer G, Raymond E: Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov. 2006, 5 (8): 671-688. 10.1038/nrd2062.
Beevers CS, Li F, Liu L, Huang S: Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells. Int J Cancer. 2006, 119 (4): 757-764. 10.1002/ijc.21932.
Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA, Sabatini DM: mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol. 2006, 16 (18): 1865-1870. 10.1016/j.cub.2006.08.001.
Zhang F, Zhang X, Li M, Chen P, Zhang B, Guo H, Cao W, Wei X, Cao X, Hao X, Zhang N: mTOR complex component Rictor interacts with PKCzeta and regulates cancer cell metastasis. Cancer Res. 2010, 70 (22): 9360-9470. 10.1158/0008-5472.CAN-10-0207.
Romagnani S: Th1/Th2 cells. Inflamm Bowel Dis. 1999, 5 (4): 285-94. 10.1097/00054725-199911000-00009.
Mazzarella G, Bianco A, Catena E, De Palma R, Abbate GF: Th1/Th2 lymphocyte polarization in asthma. Allergy. 2000, 55 (61): 6-9.
Steinke JW, Borish L: Th2 cytokines and asthma. Interleukin-4: its role in the pathogenesis of asthma, and targeting it for asthma treatment with interleukin-4 receptor antagonists. Respir Res. 2001, 2 (2): 66-70. 10.1186/rr40.
Zhang XL, Komada Y, Chipeta J, Li QS, Inaba H, Azuma E, Yamamoto H, Sakurai M: Intracellular cytokine profile of T cells from children with acute lymphoblastic leukemia. Cancer Immunol Immunother. 2000, 49 (3): 165-172. 10.1007/s002620050616.
Skinnider BF, Mak TW: The role of cytokines in classical Hodgkin lymphoma. Blood. 2002, 99 (12): 4283-4297. 10.1182/blood-2002-01-0099.
Schotte D, Lange-Turenhout E, Stumpel D, Stam R, Buijs-Gladdines J, Meijerink J, Pieters R, Den Boer M: Expression of miR-196b is not exclusively MLL-driven but is especially linked to activation of HOXA genes in pediatric acute lymphoblastic leukemia. Haematologica. 2010, 95 (10): 1675-1682. 10.3324/haematol.2010.023481.
Buske C, Humphries RK: Homeobox genes in leukemogenesis. Int J Hematol. 2000, 71 (4): 301-308.
Popovic R, Riesbeck LE, Velu CS, Chaubey A, Zhang J, Achille NJ, Erfurth FE, Eaton K, Lu J, Grimes HL, Chen J, Rowley JD, Zeleznik-Le NJ: Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood. 2009, 113 (14): 3314-3322. 10.1182/blood-2008-04-154310.
Mach B, Steimle V, Martinez-Soria E, Reith W: Regulation of MHC class II genes: lessons from a disease. Annu Rev Immunol. 1996, 14: 301-331. 10.1146/annurev.immunol.14.1.301.
Bolognese F, Wasner M, Dohna CL, Gurtner A, Ronchi A, Muller H, Manni I, Mossner J, Piaggio G, Mantovani R, Engeland K: The cyclin B2 promoter depends on NF-Y, a trimer whose CCAAT-binding activity is cell-cycle regulated. Oncogene. 1999, 18 (10): 1845-1853. 10.1038/sj.onc.1202494.
Mantovani R: The molecular biology of the CCAAT-binding factor NF-Y. Gene. 1999, 239: 15-27. 10.1016/S0378-1119(99)00368-6.
Joglekar M, Patil D, Joglekar V, Rao G, Reddy D, Mitnala S, Shouche Y, Hardikar A: The miR-30 family microRNAs confer epithelial phenotype to human pancreatic cells. Islets. 2009, 1 (2): 137-147. 10.4161/isl.1.2.9578.
Wu F, Zhu S, Ding Y, Beck W, Mo Y: MicroRNA-mediated regulation of Ubc9 expression in cancer cells. Clin Cancer Res. 2009, 15 (5): 1550-1557. 10.1158/1078-0432.CCR-08-0820.
Bosshart H, Jarrett R: Deficient major histocompatibility complex class II antigen presentation in a subset of Hodgkin’s disease tumor cells. Blood. 1998, 92 (7): 2252-2259.
Katze M, He Y, Gale M: Viruses and interferon: a fight for supremacy. Nat Rev Immunol. 2002, 2 (9): 675-687. 10.1038/nri888.
Okuda T, Nishimura M, Nakao M, Fujitaa Y: RUNX1/AML1: a central player in hematopoiesis. Int J Hematol. 2001, 74 (3): 252-257. 10.1007/BF02982057.
Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe A, Speck N: Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci. 1996, 93 (8): 3444-3449. 10.1073/pnas.93.8.3444.
Asou N: The role of a Runt domain transcription factor AML1/RUNX1 in leukemogenesis and its clinical implications. Crit Rev Oncol Hematol. 2003, 45 (2): 129-150. 10.1016/S1040-8428(02)00003-3.
Varki A: Biological roles of oligosaccharides: all of the theories are correct. Glycobiology. 1993, 3 (2): 97-130. 10.1093/glycob/3.2.97.
Zeller C, Marchase R: Gangliosides as modulators of cell function. American Journal of Physiology-Cell Physiology. 1992, 262 (6): C1341-C1355.
Sprong H, Kruithof B, Leijendekker R, Slot J, Van Meer G, van der Sluijs P: UDP-galactose: ceramide galactosyltransferase is a class I integral membrane protein of the endoplasmic reticulum. J Biol Chem. 1998, 273 (40): 25880-25888. 10.1074/jbc.273.40.25880.
Yahi N, Spitalnik S, Stefano K, De Micco P, Gonzalez-Scarano F, Fantini J: Interferon-[gamma] decreases cell surface expression of galactosyl ceramide, the receptor for HIV-1 GP120 on human colonic epithelial cells. Virology. 1994, 204 (2): 550-557. 10.1006/viro.1994.1568.
Iida A, Saito S, Sekine A, Mishima C, Kitamura Y, Kondo K, Harigae S, Osawa S, Nakamura Y: Catalog of 86 single-nucleotide polymorphisms (SNPs) in three uridine diphosphate glycosyltransferase genes: UGT2A1, UGT2B15, and UGT8. J Hum Genet. 2002, 47 (10): 505-510. 10.1007/s100380200075.
Xu C: Tumor cell survival strategies in Hodgkin lymphoma. 2010, The Netherland’s: PhD thesis, Rijksuniversiteit Groningen
Barik S: An intronic microRNA silences genes that are functionally antagonistic to its host gene. Nucleic Acids Res. 2008, 36 (16): 5232-5241. 10.1093/nar/gkn513.
Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi P: A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?. Cell. 2011, 146 (3): 353-358. 10.1016/j.cell.2011.07.014.
Soh D, Dong D, Yike G, Wong L: PathwayAPI. 2012, [Online] http://www.pathwayapi.com/
Memorial Sloan-Kettering Cancer Center: microRNA.org - Targets and Expression Database. [Online] http://www.microrna.org/ 2012
Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011, 39 (suppl 1): D152-D157. [http://nar.oxfordjournals.org/content/39/suppl_1/D152.abstract]
Soh D, Dong D, Guo Y, Wong L: Consistency, comprehensiveness, and compatibility of pathway databases. BMC Bioinforma. 2010, 11: 449-10.1186/1471-2105-11-449. http://www.biomedcentral.com/1471-2105/11/449,
NCBI Gene. [Online] http://www.ncbi.nlm.nih.gov/ gene 2012
Sayers E: E-utilities Quick Start. 2010, Bethesda (MD): National Center for Biotechnology Information (US)
Betel D, Wilson M, Gabow A, Marks DS, Sander C: The microRNA.org resource: targets and expression. Nucleic Acids Res. 2008, 36 (Database issue): D149-D153.
Chen YA, Tripathi LP, Mizuguchi K: TargetMine, an integrated data warehouse for candidate gene prioritisation and target discovery. PLoS ONE. 2011, 6 (3): e17844-10.1371/journal.pone.0017844. [http://dx.doi.org/10.1371%2Fjournal. pone.0017844]
Wasserman Lab: Transcription Factor Encyclopedia (TFe). 2012, http://www.cisreg.ca/tfe,
Rodriguez A, Griffiths-Jones S, Ashurst J, Bradley A: Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004, 14 (10a): 1902-1910. 10.1101/gr.2722704.
Ozsolak F, Poling L, Wang Z, Liu H, Liu X, Roeder R, Zhang X, Song J, Fisher D: Chromatin structure analyses identify miRNA promoters. Genes Dev. 2008, 22 (22): 3172-3183. 10.1101/gad.1706508.
Monteys A, Spengler R, Wan J, Tecedor L, Lennox K, Xing Y, Davidson B: Structure and activity of putative intronic miRNA promoters. Rna. 2010, 16 (3): 495-505. 10.1261/rna.1731910.
Saini H, Enright A, Griffiths-Jones S: Annotation of mammalian primary microRNAs. BMC Genomics. 2008, 9: 564-10.1186/1471-2164-9-564.
Lin SL, Miller JD, Ying SY: Intronic microRNA (miRNA). J Biomed Biotechnol. 2006, 2006 (4): 26818-
Baskerville S, Bartel D: Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. Rna. 2005, 11 (3): 241-247. 10.1261/rna.7240905.
Shomron N, Levy C: MicroRNA-biogenesis and pre-mRNA splicing crosstalk. J Biomed Biotechnol. 2009, 2009 (594678): http://dx.doi.org/10.1155/2009/594678,
Smalheiser N, et al: EST analyses predict the existence of a population of chimeric microRNA precursor-mRNA transcripts expressed in normal human and mouse tissues. Genome Biol. 2003, 4 (7): 403-10.1186/gb-2003-4-7-403.
Kim Y, Kim V: Processing of intronic microRNAs. EMBO J. 2007, 26 (3): 775-783. 10.1038/sj.emboj.7601512.
He C, Li Z, Chen P, Huang H, Hurst L, Chen J: Young intragenic miRNAs are less coexpressed with host genes than old ones: implications of miRNA–host gene coevolution. Nucleic Acids Res. 2012, 40 (9): 4002-12. 10.1093/nar/gkr1312.
Enright A, John B, Gaul U, Tuschl T, Sander C, Marks D: MicroRNA targets in Drosophila. Genome Biol. 2003, 5 (1): R1-10.1186/gb-2003-5-1-r1.
Wuchty S, Fontana W, Hofacker I, Schuster P, et al: Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers. 1999, 49 (2): 145-165. 10.1002/(SICI)1097-0282(199902)49:2<145::AID-BIP4>3.0.CO;2-G.
Betel D, Koppal A, Agius P, Sander C, Leslie C: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 2010, 11 (8): R90-10.1186/gb-2010-11-8-r90.
John B, Enright A, Aravin A, Tuschl T, Sander C, Marks D: Human microRNA targets. PLoS Biol. 2004, 2 (11): e363-10.1371/journal.pbio.0020363.
Lewis B, Shih I, Jones-Rhoades M, Bartel D, Burge C, et al: Prediction of mammalian microRNA targets. Cell. 2003, 115 (7): 787-798. 10.1016/S0092-8674(03)01018-3.
Filipowicz W, Bhattacharyya S, Sonenberg N: Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?. Nat Rev Genet. 2008, 9 (2): 102-114.