A suspect-oriented intelligent and automated computer forensic analysis
Tài liệu tham khảo
AccessData, 2015
Adderley, 2001, Data mining case study: modeling the behavior of offenders who commit serious sexual assaults, 215
Beebe, 2007, Digital forensic text string searching: improving information retrieval effectiveness by thematically clustering search results, Digit Investig, 4, 49, 10.1016/j.diin.2007.06.005
Beebe, 2011, Post-retrieval search hit clustering to improve information retrieval effectiveness: two digital forensics case studies, Decis Support Syst, 51, 732, 10.1016/j.dss.2011.01.009
Brainz, 2014
Carrier, 2015
2010, 567
Casey, 2008, The impact of full disk encryption on digital forensics, ACM SIGOPS Oper Syst Rev, 42, 93, 10.1145/1368506.1368519
DoJ, 2001
e-fense, 2014
FBI, 2013
Fei, 2006, The use of self-organising maps for anomalous behaviour detection in a digital investigation, Forensic Sci Int, 162, 33, 10.1016/j.forsciint.2006.06.046
Fei, 2005, 113
Feyereisl, 2009, Self-organising maps in computer security, 1
Garfinkel, 2010, Digital forensics research: the next 10 years, Digit Investig, 7, S64, 10.1016/j.diin.2010.05.009
Guidance Software, 2015
HHD Software (2015) Free Hex Editor Neo, http://www.hhdsoftware.com/free-hex-editor.
Inforsecusa, 2011
Kohonen, 1998, The self-organizing map, Neurocomputing, 21, 1, 10.1016/S0925-2312(98)00030-7
Kayacik, 2006, Using self-organizing maps to build an attack map for forensic analysis
Lawton, 2014
Matlab, 2015
NIST, 2013
Office of the Inspector General, 2015
Palomo, 2011, Visualization of network forensics traffic data with self-organizing map for qualitative features, 1740
Paraben Corporation, 2015
RCFL, 2014
Veracode, 2015
Wang WB, Huang ML, Zhang J, and Lai W. (2015) Detecting criminal relationships through SOM visual analytics, in Information visualisation (iV), 2015 19th international conference on, vol., no., pp.316–321, 22–24 July 2015 http://dx.doi.org/10.1109/iV.2015.62.