A survey on wearable hand robotics design for assistive, rehabilitative, and haptic applications
Tóm tắt
This study presents a comparative analysis to be a resource for those who want to work in the wearable hand robot field. The fact that robotic rehabilitation is more accessible than classical methods and shows promising results increases interest in it. When the last 20 years are analyzed, the number of studies in this field has increased continuously, without exception. According to Google Scholar data, 17,200 studies were conducted only in 2022 related to hand rehabilitation robots. When the literature is reviewed, thousands of studies are faced with design and control systems that seem to have been designed into many different types and structures. The number of studies reviewing and surveying some of these is also insufficient to solve the confusion in the minds of the researchers in a shorter way. Rather than reporting what other researchers have done, our work is based on classifying and putting concepts together instead of creating dozens of sub-categories. We aim to inform researchers who are interested in the field but are hesitant, to create a template in their minds, and to suggest the most beneficial design alternatives in terms of mechanics and hardware-software implementations. The most cited and recent studies were selected, and a systematic categorization was made based on criteria such as kinematic design, control system, and actuator type. The kinematic categorization it employs is an original classification specific to this study and has been applied to all models examined.
Tài liệu tham khảo
Ab Patar, M.N.A.B., Komeda, T., Mahmud, J.: Force assisted hand and finger device for rehabilitation (2014). https://doi.org/10.1109/ISTMET.2014.6936493
AbdulKareem, A.H., Adila, A.S., Husi, G.: Recent trends in robotic systems for upper-limb stroke recovery: A low-cost hand and wrist rehabilitation device (2018). https://doi.org/10.1109/SIMS.2018.8355302
Agarwal, P., Deshpande, A.D.: Impedance and force-field control of the index finger module of a hand exoskeleton for rehabilitation (2015). https://doi.org/10.1109/ICORR.2015.7281180
Agarwal, P., Kuo, P.-H., Neptune, R.R., Deshpande, A.D.: A novel framework for virtual prototyping of rehabilitation exoskeletons (2013). https://doi.org/10.1109/ICORR.2013.6650382
Agarwal, P., Deshpande, A.D.: Subject-specific assist-as-needed controllers for a hand exoskeleton for rehabilitation. IEEE Robot Autom Lett 3(1), 508–515 (2018). https://doi.org/10.1109/LRA.2017.2768124
Akgun, G., Cetin, A.E., Kaplanoglu, E.: Exoskeleton design and adaptive compliance control for hand rehabilitation. Trans Institute Measurement Control 42(3), 493–502 (2020). https://doi.org/10.1177/0142331219874976
Allotta, B., Conti, R., Governi, L., Meli, E., Ridolfi, A., Volpe, Y.: Development and experimental testing of a portable hand exoskeleton (2015). https://doi.org/10.1109/IROS.2015.7354131
Ang, B.W.K., Yeow, C.-H.: Print-it-Yourself (PIY) glove: A fully 3D printed soft robotic hand rehabilitative and assistive exoskeleton for stroke patients (2017). https://doi.org/10.1109/IROS.2017.8202295
Arata, J., Ohmoto, K., Gassert, R., Lambercy, O., Fujimoto, H., Wada, I.: A new hand exoskeleton device for rehabilitation using a three-layered sliding spring mechanism (2013). https://doi.org/10.1109/ICRA.2013.6631126
Ates, S., Sluiter, V.I., Lammertse, P., Stienen, A.H.A.: ServoSEA concept: Cheap, miniature series-elastic actuators for orthotic, prosthetic and robotic hands (2014). https://doi.org/10.1109/BIOROB.2014.6913868
Ates, S., Mora-Moreno, I., Wessels, M., Stienen, A.H.A.: Combined active wrist and hand orthosis for home use: Lessons learned (2015). https://doi.org/10.1109/ICORR.2015.7281232
Atzori, M., Gijsberts, A., Kuzborskij, I., Elsig, S., Mittaz Hager, A.-G., Deriaz, O., Castellini, C., Müller, H., Caputo, B.: Characterization of a benchmark database for myoelectric movement classification. IEEE Trans Neural Syst Rehabilit Eng 23(1), 73–83 (2015). https://doi.org/10.1109/TNSRE.2014.2328495
Battaglia, E., Catalano, M.G., Grioli, G., Bianchi, M., Bicchi, A.: ExoSense: Measuring manipulation in a wearable manner (2018). https://doi.org/10.1109/ICRA.2018.8460498
Ben-Tzvi, P., Ma, Z.: Sensing and force-feedback exoskeleton (safe) robotic glove. IEEE Trans Neural Syst Rehabilit Eng 23(6), 992–1002 (2015). https://doi.org/10.1109/TNSRE.2014.2378171
Biggar, S., Yao, W.: Design and evaluation of a soft and wearable robotic glove for hand rehabilitation. IEEE Trans Neural Syst Rehabilit Eng 24(10), 1071–1080 (2016). https://doi.org/10.1109/TNSRE.2016.2521544
Blake, J., Gurocak, H.B.: Haptic glove with mr brakes for virtual reality. IEEE/ASME Trans Mechatron 14(5), 606–615 (2009). https://doi.org/10.1109/TMECH.2008.2010934
Boser, Q., Dawson, M., Schofield, J., Dziwenko, G., Hebert, J.: Defining the design requirements for an assistive powered hand exoskeleton: A pilot explorative interview study and case series. Prosthetics and Orthotics International Publish Ahead of Print, 030936462096394 (2020). https://doi.org/10.1177/0309364620963943
Bouzit, M., Popescu, G., Burdea, G., Boian, R.: The Rutgers Master II-ND force feedback glove (2002). https://doi.org/10.1109/HAPTIC.2002.998952
Burns, M.K., Pei, D., Vinjamuri, R.: Myoelectric control of a soft hand exoskeleton using kinematic synergies. IEEE Trans Biomed Circuits Syst 13(6), 1351–1361 (2019). https://doi.org/10.1109/TBCAS.2019.2950145
Cappello, L., Binh, D.K., Yen, S.-C., Masia, L.: Design and preliminary characterization of a soft wearable exoskeleton for upper limb (2016). https://doi.org/10.1109/BIOROB.2016.7523695
Cempini, M., Cortese, M., Vitiello, N.: A powered finger-thumb wearable hand exoskeleton with self-aligning joint axes. IEEE/ASME Trans Mechatron 20(2), 705–716 (2015). https://doi.org/10.1109/TMECH.2014.2315528
Cetin, A.E., Kaplanoglu, E., Ulkir, O., Akgun, G.: Mechanical design of exoskeleton for hand therapeutic rehabilitation. J Mech Eng 4, 09–17 (2018)
Chen, T., Lum, P.S.: Hand rehabilitation after stroke using a wearable, high DOF, spring powered exoskeleton (2016). https://doi.org/10.1109/EMBC.2016.7590768
Cheng, L., Chen, M., Li, Z.: Design and control of a wearable hand rehabilitation robot. IEEE Access 6, 74039–74050 (2018). https://doi.org/10.1109/ACCESS.2018.2884451
Chiri, A., Giovacchini, F., Vitiello, N., Cattin, E., Roccella, S., Vecchi, F., Carrozza, M.C.: HANDEXOS: Towards an exoskeleton device for the rehabilitation of the hand (2009). https://doi.org/10.1109/IROS.2009.5354376
Cisnal, A., Pérez-Turiel, J., Fraile, J.-C., Sierra, D., de la Fuente, E.: Robhand: A hand exoskeleton with real-time emg-driven embedded control. quantifying hand gesture recognition delays for bilateral rehabilitation. IEEE Access 9, 137809–137823 (2021). https://doi.org/10.1109/ACCESS.2021.3118281
Côté-Allard, U., Fall, C.L., Drouin, A., Campeau-Lecours, A., Gosselin, C., Glette, K.: Laviolet: Deep learning for electromyographic hand gesture signal classification using transfer learning. IEEE Trans Neural Syst Rehabilit Eng 27(4), 760–771 (2019). https://doi.org/10.1109/TNSRE.2019.2896269
Cui, L., Phan, A., Allison, G.: Design and fabrication of a three dimensional printable non-assembly articulated hand exoskeleton for rehabilitation (2015). https://doi.org/10.1109/EMBC.2015.7319425
Dipietro, L., Sabatini, A.M., Dario, P.: A survey of glove-based systems and their applications. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 38(4), 461–482 (2008). https://doi.org/10.1109/TSMCC.2008.923862
Donati, E., Payvand, M., Risi, N., Krause, R., Indiveri, G.: Discrimination of emg signals using a neuromorphic implementation of a spiking neural network. IEEE Trans Biomed Circuits Syst 13(5), 795–803 (2019). https://doi.org/10.1109/TBCAS.2019.2925454
Dovat, L., Lambercy, O., Gassert, R., Maeder, T., Milner, T., Leong, T.C., Burdet, E.: A cable-actuated rehabilitation system to train hand function after stroke. IEEE Trans Neural Syst Rehabilit Engin 16(6), 582–591 (2008). https://doi.org/10.1109/TNSRE.2008.2010347
Dragusanu, M., Iqbal, M.Z., Baldi, T.L., Prattichizzo, D., Malvezzi, M.: Design, development, and control of a hand/wrist exoskeleton for rehabilitation and training. IEEE Trans Robot 38(3), 1472–1488 (2022). https://doi.org/10.1109/TRO.2022.3172510
Du, H., Xiong, W., Wang, Z., Chen, L.: Design of a new type of pneumatic force feedback data glove (2011). https://doi.org/10.1109/FPM.2011.6045775
Fang, H., Xie, Z., Liu, H.: An exoskeleton master hand for controlling DLR/HIT hand (2009). https://doi.org/10.1109/IROS.2009.5354624
Farina, D., Jiang, N., Rehbaum, H., Holobar, A., Graimann, B., Dietl, H., Aszmann, O.C.: The extraction of neural information from the surface emg for the control of upper-limb prostheses: Emerging avenues and challenges. IEEE Trans Neural Syst Rehabilit Eng 22(4), 797–809 (2014). https://doi.org/10.1109/TNSRE.2014.2305111
Felix Orlando, M., Behera, L., Dutta, A., Saxena, A.: Optimal design and redundancy resolution of a novel robotic two-fingered exoskeleton. IEEE Trans Med Robot Bionics 2(1), 59–75 (2020). https://doi.org/10.1109/TMRB.2020.2970114
Fischer, H.C., Triandafilou, K.M., Thielbar, K.O., Ochoa, J.M., Lazzaro, E.D.C., Pacholski, K.A., Kamper, D.G.: Use of a portable assistive glove to facilitate rehabilitation in stroke survivors with severe hand impairment. IEEE Trans Neural Syst Rehabilit Eng 24(3), 344–351 (2016). https://doi.org/10.1109/TNSRE.2015.2513675
Gabardi, M., Solazzi, M., Leonardis, D., Frisoli, A.: Design and evaluation of a novel 5 dof underactuated thumb-exoskeleton. IEEE Robot Autom Lett 3(3), 2322–2329 (2018). https://doi.org/10.1109/LRA.2018.2807580
Gasser, B.W., Bennett, D.A., Durrough, C.M., Goldfarb, M.: Design and preliminary assessment of Vanderbilt hand exoskeleton (2017). https://doi.org/10.1109/ICORR.2017.8009466
Gerez, L., Dwivedi, A., Liarokapis, M.: A Hybrid. Soft exoskeleton glove equipped with a telescopic extra thumb and abduction capabilities (2020). https://doi.org/10.1109/ICRA40945.2020.9197473
Gijsberts, A., Atzori, M., Castellini, C., Müller, H., Caputo, B.: Movement error rate for evaluation of machine learning methods for semg-based hand movement classification. IEEE Trans Neural Syst Rehabilit Eng 22(4), 735–744 (2014). https://doi.org/10.1109/TNSRE.2014.2303394
Godoy, R.V., Lahr, G.J.G., Dwivedi, A., Reis, T.J.S., Polegato, P.H., Becker, M., Caurin, G.A.P., Liarokapis, M.: Electromyography-based, robust hand motion classification employing temporal multi-channel vision transformers. IEEE Robot Autom Lett 7(4), 10200–10207 (2022). https://doi.org/10.1109/LRA.2022.3192623
Gopura, R.A.R.C., Kiguchi, K., Bandara, D.S.V.: A brief review on upper extremity robotic exoskeleton systems (2011). https://doi.org/10.1109/ICIINFS.2011.6038092
Gull, M., Bai, S., Bak, T.: A review on design of upper limb exoskeletons. Robotics 9, 16 (2020). https://doi.org/10.3390/robotics9010016
Hahne, J.M., Bießmann, F., Jiang, N., Rehbaum, H., Farina, D., Meinecke, F.C., Müller, K.-R., Parra, L.C.: Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control. IEEE Trans Neural Syst Rehabilit Eng 22(2), 269–279 (2014). https://doi.org/10.1109/TNSRE.2014.2305520
Hartopanu, S., Poboroniuc, M., Serea, F., Irimia, D., Livint, G.: Design of a hybrid FES-mechanical intelligent haptic robotic glove (2013). https://doi.org/10.1109/ICSTCC.2013.6689040
Hartopanu, S., Poboroniuc, M., Serea, F., Livint, G.: Towards human arm rehabilitation in stroke patients by means of a hybrid FES amp;robotic glove (2014). https://doi.org/10.1109/ICEPE.2014.6969886
Heo, P., Kim, J.: Power-assistive finger exoskeleton with a palmar opening at the fingerpad. IEEE Trans Biomed Eng 61(11), 2688–2697 (2014). https://doi.org/10.1109/TBME.2014.2325948
Heo, P., Gu, G., Lee, S.-J., Rhee, K., Kim, J.: Current hand exoskeleton technologies for rehabilitation and assistive engineering. Int J Precis Eng Manuf (2012). https://doi.org/10.1007/s12541-012-0107-2
Ho, N.S.K., Tong, K.Y., Hu, X.L., Fung, K.L., Wei, X.J., Rong, W., Susanto, E.A.: An emg-driven exoskeleton hand robotic training device on chronic stroke subjects: Task training system for stroke rehabilitation, 1–5 (2011). https://doi.org/10.1109/ICORR.2011.5975340
Hofmann, U.A.T., Bützer, T., Lambercy, O., Gassert, R.: Design and evaluation of a bowden-cable-based remote actuation system for wearable. Robotics (2018). https://doi.org/10.1109/LRA.2018.2809625
Hong, M.B., Kim, S.J., Ihn, Y.S., Jeong, G.-C., Kim, K.: Kulex-hand: An underactuated wearable hand for grasping power assistance. IEEE Trans Robot 35(2), 420–432 (2019). https://doi.org/10.1109/TRO.2018.2880121
Ingram, J., Kording, K., Howard, I., Wolpert, D.: The statistics of natural hand movements. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale 188, 223–36 (2008). https://doi.org/10.1007/s00221-008-1355-3
Iqbal, J., Tsagarakis, N.G., Caldwell, D.G.: A human hand compatible optimised exoskeleton system (2010a). https://doi.org/10.1109/ROBIO.2010.5723409
Iqbal, J., Tsagarakis, N., Fiorilla, A., Caldwell, D.: A portable rehabilitation device for the hand (2010b). https://doi.org/10.1109/IEMBS.2010.5627448
Iqbal, J., Tsagarakis, N.G., Caldwell, D.G.: A multi-DOF robotic exoskeleton interface for hand motion assistance (2011). https://doi.org/10.1109/IEMBS.2011.6090458
Irimia, D.C., Poboroniuc, M.S., Hartopanu, S., Sticea, D., Paicu, G., Ignat, B.E.: Post-stroke hand rehabilitation using a hybrid FES-robotic glove (2016). https://doi.org/10.1109/ICEPE.2016.7781362
Jeong, U., In, H., Lee, H., Kang, B.B., Cho, K.-J.: Investigation on the control strategy of soft wearable robotic hand with slack enabling tendon actuator (2015). https://doi.org/10.1109/ICRA.2015.7139895
Jiang, N., Vujaklija, I., Rehbaum, H., Graimann, B., Farina, D.: Is accurate mapping of emg signals on kinematics needed for precise online myoelectric control? IEEE Trans Neural Syst Rehabilit Eng 22(3), 549–558 (2014). https://doi.org/10.1109/TNSRE.2013.2287383
Jiang, S., Kang, P., Song, X., Lo, B.P.L., Shull, P.B.: Emerging wearable interfaces and algorithms for hand gesture recognition: a survey. IEEE Rev Biomed Eng 15, 85–102 (2022). https://doi.org/10.1109/RBME.2021.3078190
Jones, C.L., Wang, F., Morrison, R., Sarkar, N., Kamper, D.G.: Design and development of the cable actuated finger exoskeleton for hand rehabilitation following stroke. IEEE/ASME Trans Mechatron 19(1), 131–140 (2014). https://doi.org/10.1109/TMECH.2012.2224359
Kang, B.B., Lee, H., In, H., Jeong, U., Chung, J., Cho, K.-J.: Development of a polymer-based tendon-driven wearable robotic hand (2016). https://doi.org/10.1109/ICRA.2016.7487562
Kawasaki, H., Ito, S., Ishigure, Y., Nishimoto, Y., Aoki, T., Mouri, T., Sakaeda, H., Abe, M.: Development of a Hand Motion Assist Robot for Rehabilitation Therapy by Patient Self-Motion. Control (2007). https://doi.org/10.1109/ICORR.2007.4428432
Kim, D.H., Heo, S.-H., Park, H.-S.: Biomimetic finger extension mechanism for soft wearable hand rehabilitation devices (2017a). https://doi.org/10.1109/ICORR.2017.8009432
Kim, S., Lee, J., Park, W., Bae, J.: Quantitative evaluation of hand functions using a wearable hand exoskeleton system (2017b). https://doi.org/10.1109/ICORR.2017.8009458
Kuchinke, L.-M., Bender, B.: Technical view on requirements for future development of hand-held rehabilitation devices (2016). https://doi.org/10.1109/BIOROB.2016.7523726
Lee, J., Bae, J.: Design of a hand exoskeleton for biomechanical analysis of the stroke hand (2015). https://doi.org/10.1109/ICORR.2015.7281246
Lee, S.W., Landers, K.A., Park, H.-S.: Biomimetic hand exotendon device (BiomHED) for functional hand rehabilitation in stroke (2013). https://doi.org/10.1109/ICORR.2013.6650388
Lee, J., Kim, S., Park, W., Bae, J.: Design of a wearable hand exoskeleton system for evaluation of hand functions (2017). https://doi.org/10.1109/URAI.2017.7992673
Lee, B.J.B., Williams, A., Ben-Tzvi, P.: Intelligent object grasping with sensor fusion for rehabilitation and assistive applications. IEEE Trans Neural Syst Rehabilit Eng 26(8), 1556–1565 (2018). https://doi.org/10.1109/TNSRE.2018.2848549
Li, H., Cheng, L.: Preliminary study on the design and control of a pneumatically-actuated hand rehabilitation device (2017). https://doi.org/10.1109/YAC.2017.7967530
Li, H., Cheng, L., Li, Z., Li, G.: Ucas-hand: An underactuated powered hand exoskeleton for assisting grasping task. In: 2021 IEEE international conference on real-time computing and robotics (RCAR), pp. 1–6 (2021). https://doi.org/10.1109/RCAR52367.2021.9517383
Liang, R., Xu, G., Li, M., He, B., Khalique, U.: Fusing topology optimization and pseudo-rigid-body method for the development of a finger exoskeleton. IEEE Robot Autom Lett 7(2), 1721–1728 (2022). https://doi.org/10.1109/LRA.2021.3114418
Lince, A., Celadon, N., Battezzato, A., Favetto, A., Appendino, S., Ariano, P., Paleari, M.: Design and testing of an under-actuated surface EMG-driven hand exoskeleton (2017). https://doi.org/10.1109/ICORR.2017.8009325
Liu, K., Aoyama, T., Hasegawa, Y., Saotome, K., Sankai, Y.: Development of wearable robotic system for finger movement assistance (2018). https://doi.org/10.23919/WAC.2018.8430300
Loconsole, C., Leonardis, D., Barsotti, M., Solazzi, M., Frisoli, A., Bergamasco, M., Troncossi, M., Foumashi, M.M., Mazzotti, C., Castelli, V.P.: An emg-based robotic hand exoskeleton for bilateral training of grasp (2013). https://doi.org/10.1109/WHC.2013.6548465
Low, J.-H., Ang, M.H., Yeow, C.-H.: Customizable soft pneumatic finger actuators for hand orthotic and prosthetic applications (2015). https://doi.org/10.1109/ICORR.2015.7281229
Lu, Z., Tong, K.-Y., Zhang, X., Li, S., Zhou, P.: Myoelectric pattern recognition for controlling a robotic hand: A feasibility study in stroke. IEEE Trans Biomed Eng 66(2), 365–372 (2019). https://doi.org/10.1109/TBME.2018.2840848
Mediouni, M., Volosnikov, A.: The trends and challenges in orthopaedic simulation. J Orthop 12(4), 253–259 (2015). https://doi.org/10.1016/j.jor.2015.05.014
Meeker, C., Park, S., Bishop, L., Stein, J., Ciocarlie, M.: EMG pattern classification to control a hand orthosis for functional grasp assistance after stroke (2017). https://doi.org/10.1109/ICORR.2017.8009413
Meng, W., Sheng, B., Klinger, M., Liu, Q., Zhou, Z., Xie, S.Q.: Design and control of a robotic wrist orthosis for joint rehabilitation (2015). https://doi.org/10.1109/AIM.2015.7222708
Michaud, C.M., Murray, C.J.L., Bloom, B.R.: Burden of disease-implications for future research. JAMA 285(5), 535–539 (2001). https://doi.org/10.1001/jama.285.5.535
Naik, G.R., Nguyen, H.T.: Nonnegative matrix factorization for the identification of emg finger movements: evaluation using matrix analysis. IEEE J Biomed Health Inform 19(2), 478–485 (2015). https://doi.org/10.1109/JBHI.2014.2326660
Naik, G.R., Al-Timemy, A.H., Nguyen, H.T.: Transradial amputee gesture classification using an optimal number of semg sensors: an approach using ica clustering. IEEE Trans Neural Syst Rehabilit Eng 24(8), 837–846 (2016). https://doi.org/10.1109/TNSRE.2015.2478138
Nathan, D.E., Johnson, M.J., McGuire, J.: Feasibility of integrating FES grasp assistance with a task-oriented robot-assisted therapy environment: A case study (2008). https://doi.org/10.1109/BIOROB.2008.4762928
Nishad, S.S., Dutta, A., Saxena, A.: Design and control of a three finger hand exoskeleton for translation of a slender object (2014). https://doi.org/10.1109/URAI.2014.7057526
Nuchkrua, T., Leephakpreeda, T., Mekarporn, T.: Development of robot hand with pneumatic artificial muscle for rehabilitation application (2013). https://doi.org/10.1109/NANOMED.2013.6766315
Nycz, C.J., Bützer, T., Lambercy, O., Arata, J., Fischer, G.S., Gassert, R.: Design and characterization of a lightweight and fully portable remote actuation system for use with a hand exoskeleton. IEEE Robot Autom Lett 1(2), 976–983 (2016). https://doi.org/10.1109/LRA.2016.2528296
Ockenfeld, C., Tong, R.K.Y., Susanto, E.A., Ho, S.-K., Hu, X.-l.: Fine finger motor skill training with exoskeleton robotic hand in chronic stroke: Stroke rehabilitation (2013). https://doi.org/10.1109/ICORR.2013.6650392
Omar, A.D., Biral, F., Oboe, R., Piron, L.: Design of a haptic device for finger and hand rehabilitation (2010). https://doi.org/10.1109/IECON.2010.5675347
Park, Y., Jo, I., Bae, J.: Development of a dual-cable hand exoskeleton system for virtual reality (2016). https://doi.org/10.1109/IROS.2016.7759174
Park, S., Weber, L., Bishop, L., Stein, J., Ciocarlie, M.: Design and development of effective transmission mechanisms on a tendon driven hand orthosis for stroke patients (2018). https://doi.org/10.1109/ICRA.2018.8461069
Park, S., Meeker, C., Weber, L.M., Bishop, L., Stein, J., Ciocarlie, M.: Multimodal sensing and interaction for a robotic hand orthosis. IEEE Robot Autom Lett 4(2), 315–322 (2019). https://doi.org/10.1109/LRA.2018.2890199
Phee, S.J., Low, S.C., Huynh, V.A., Kencana, A.P., Sun, Z.L., Yang, K.: Master and slave transluminal endoscopic robot (MASTER) for natural orifice transluminal endoscopic surgery (NOTES) (2009). https://doi.org/10.1109/IEMBS.2009.5333413
Polygerinos, P., Galloway, K.C., Sanan, S., Herman, M., Walsh, C.J.: EMG controlled soft robotic glove for assistance during activities of daily living (2015). https://doi.org/10.1109/ICORR.2015.7281175
Popov, D., Gaponov, I., Ryu, J.-H.: Portable exoskeleton glove with soft structure for hand assistance in activities of daily living. IEEE/ASME Trans Mechatron 22(2), 865–875 (2017). https://doi.org/10.1109/TMECH.2016.2641932
Pu, S.-W., Chang, J.-Y., Pei, Y.-C., Kuo, C.-C., Wang, M.-J.: Anthropometry-based structural design of a hand exoskeleton for rehabilitation (2016). https://doi.org/10.1109/M2VIP.2016.7827282
Pu, S.-W., Pei, Y.-C., Chang, J.-Y.: Decoupling finger joint motion in an exoskeletal hand: A design for robot-assisted rehabilitation. IEEE Trans Indust Electron 67(1), 686–697 (2020). https://doi.org/10.1109/TIE.2019.2912793
Randazzo, L., Iturrate, I., Perdikis, S., Millán, J.D.R.: mano: A wearable hand exoskeleton for activities of daily living and neurorehabilitation. IEEE Robot Autom Lett 3(1), 500–507 (2018). https://doi.org/10.1109/LRA.2017.2771329
Richards, D.S., Georgilas, I., Dagnino, G., Dogramadzi, S.: Powered exoskeleton with palm degrees of freedom for hand rehabilitation (2015). https://doi.org/10.1109/EMBC.2015.7319427
Rose, C.G., O’Malley, M.K.: Hybrid rigid-soft hand exoskeleton to assist functional dexterity. IEEE Robot Autom Lett 4(1), 73–80 (2019). https://doi.org/10.1109/LRA.2018.2878931
Sandoval-Gonzalez, O., Herrera Aguilar, I., Jacinto Villegas, J., Avizzano, C., Flores Cuautle, J., Tripicchio, P., Portillo-Rodríguez, O.: Design and development of a hand exoskeleton robot for active and passive. Rehabilitation (2016). https://doi.org/10.5772/62404
Sarac, M., Solazzi, M., Otaduy, M.A., Frisoli, A.: Rendering strategies for underactuated hand exoskeletons. IEEE Robot Autom Lett 3(3), 2087–2092 (2018). https://doi.org/10.1109/LRA.2018.2809916
Sarac, M., Solazzi, M., Frisoli, A.: Design requirements of generic hand exoskeletons and survey of hand exoskeletons for rehabilitation, assistive, or haptic use. IEEE Trans Haptics 12(4), 400–413 (2019). https://doi.org/10.1109/TOH.2019.2924881
Sarakoglou, I., Brygo, A., Mazzanti, D., Hernandez, N.G., Caldwell, D.G., Tsagarakis, N.G.: HEXOTRAC: A highly under-actuated hand exoskeleton for finger tracking and force feedback (2016). https://doi.org/10.1109/IROS.2016.7759176
Sierotowicz, M., Lotti, N., Nell, L., Missiroli, F., Alicea, R., Zhang, X., Xiloyannis, M., Rupp, R., Papp, E., Krzywinski, J., Castellini, C., Masia, L.: Emg-driven machine learning control of a soft glove for grasping assistance and rehabilitation. IEEE Robot Autom Lett 7(2), 1566–1573 (2022). https://doi.org/10.1109/LRA.2021.3140055
Skirven, T.M.: Rehabilitation of the Hand and Upper Extremity. Elsevier, Philadelphia (2011)
Song, K.-T., Chai, Y.-Y.: Compliance control of wearable robotic fingers for rehabilitation applications (2013). https://doi.org/10.1109/CACS.2013.6734151
Stilli, A., Cremoni, A., Bianchi, M., Ridolfi, A., Gerii, F., Vannetti, F., Wurdemann, H.A., Allotta, B., Althoefer, K.: AirExGlove - A novel pneumatic exoskeleton glove for adaptive hand rehabilitation in post-stroke patients (2018). https://doi.org/10.1109/ROBOSOFT.2018.8405388
Sun, Z., Miao, X., Li, X.: Design of a bidirectional force feedback dataglove based on pneumatic artificial muscles (2009). https://doi.org/10.1109/ICMA.2009.5246223
Sun, N., Cheng, L., Tian, L., Hou, Z.-G., Tan, M.: Design and validation of an asymmetric bowden-cable-driven series elastic actuator (2019). https://doi.org/10.1109/ROBIO49542.2019.8961703
Sun, N., Li, G., Cheng, L.: Design and validation of a self-aligning index finger exoskeleton for post-stroke rehabilitation. IEEE Trans Neural Syst Rehabilit Eng 29, 1513–1523 (2021). https://doi.org/10.1109/TNSRE.2021.3097888
Sunderland, A., Fletcher, D., Bradley, L., Tinson, D., Hewer, R., Wade, D.: Enhanced physical therapy for arm function after stroke: A one year follow up study. J Neurol Neurosurg Psychiatry 57, 856–858 (1994). https://doi.org/10.1136/jnnp.57.7.856
Tadano, K., Akai, M., Kadota, K., Kawashima, K.: Development of grip amplified glove using bi-articular mechanism with pneumatic artificial rubber muscle (2010). https://doi.org/10.1109/ROBOT.2010.5509393
Takahashi, N., Furuya, S., Koike, H.: Soft exoskeleton glove with human anatomical architecture: Production of dexterous finger movements and skillful piano performance. IEEE Trans Haptics 13(4), 679–690 (2020). https://doi.org/10.1109/TOH.2020.2993445
Tang, Z.J., Sugano, S., Iwata, H.: A novel. MRI compatible hand exoskeleton for finger rehabilitation (2011). https://doi.org/10.1109/SII.2011.6147430
Tang, T., Zhang, D., Xie, T., Zhu, X.: An exoskeleton system for hand rehabilitation driven by shape memory alloy (2013). https://doi.org/10.1109/ROBIO.2013.6739553
Tran, P., Jeong, S., Wolf, S.L., Desai, J.P.: Patient-specific, voice-controlled, robotic flexotendon glove-ii system for spinal cord injury. IEEE Robot Autom Lett 5(2), 898–905 (2020). https://doi.org/10.1109/LRA.2020.2965900
Tran, P., Jeong, S., Herrin, K.R., Desai, J.P.: Review: hand exoskeleton systems, clinical rehabilitation practices, and future prospects. IEEE Trans Med Robot Bionics 3(3), 606–622 (2021). https://doi.org/10.1109/TMRB.2021.3100625
Uchida, H., Murakami, T.: An approach to power assist hand exoskeleton for patients with paralysis (2018). https://doi.org/10.1109/AMC.2019.8371172
Wang, F., Shastri, M., Jones, C.L., Gupta, V., Osswald, C., Kang, X., Kamper, D.G., Sarkar, N.: Design and control of an actuated thumb exoskeleton for hand rehabilitation following stroke (2011). https://doi.org/10.1109/ICRA.2011.5980099
Wang, H.-P., Guo, A.-W., Bi, Z.-Y., Zhou, Y.-X., Wang, Z.-G., Lu, X.-Y.: A novel distributed functional electrical stimulation and assessment system for hand movements using wearable technology (2016). https://doi.org/10.1109/BioCAS.2016.7833728
Wang, D., Meng, Q., Meng, Q., Li, X., Yu, H.: Design and development of a portable exoskeleton for hand rehabilitation. IEEE Trans Neural Syst Rehabilit Eng 26(12), 2376–2386 (2018). https://doi.org/10.1109/TNSRE.2018.2878778
Wege, A., Hommel, G.: Development and control of a hand exoskeleton for rehabilitation of hand injuries (2005). https://doi.org/10.1109/IROS.2005.1545506
Wege, A., Zimmermann, A.: Electromyography sensor based control for a hand exoskeleton (2007). https://doi.org/10.1109/ROBIO.2007.4522381
Weiss, P., Heyer, L., Münte, T.F., Heldmann, M., Schweikard, A., Maehle, E.: Towards a parameterizable exoskeleton for training of hand function after stroke (2013). https://doi.org/10.1109/ICORR.2013.6650505
Westerveld, A.J., Schouten, A.C., Veltink, P.H., van der Kooij, H.: Passive reach and grasp with functional electrical stimulation and robotic arm support (2014). https://doi.org/10.1109/EMBC.2014.6944275
Winter, S.H., Bouzit, M.: Use of magnetorheological fluid in a force feedback glove. IEEE Trans Neural Syst Rehabilit Eng 15(1), 2–8 (2007). https://doi.org/10.1109/TNSRE.2007.891401
Xiloyannis, M., Cappello, L., Khanh, D.B., Yen, S.-C., Masia, L.: Modelling and design of a synergy-based actuator for a tendon-driven soft robotic glove, 1213–1219 (2016). https://doi.org/10.1109/BIOROB.2016.7523796
Xing, K., Huang, J., Xu, Q., Wang, Y.: Design of a wearable rehabilitation robotic hand actuated by pneumatic artificial muscles (2009)
Yang, X., Shah, S.A., Ren, A., Fan, D., Zhao, N., Zheng, S., Zhao, W., Wang, W., Soh, P.J., Abbasi, Q.H.: Band sensing-based motion assessment framework for cerebellar dysfunction patients. IEEE Sens J 19(19), 8460–8467 (2019). https://doi.org/10.1109/JSEN.2018.2861906
Yang, L., Zhang, F., Zhu, J., Fu, Y.: A portable device for hand rehabilitation with force cognition: Design, interaction, and experiment. IEEE Trans Cognit Dev Syst 14(2), 599–607 (2022). https://doi.org/10.1109/TCDS.2021.3055626
Yap, H.K., Lim, J.H., Nasrallah, F., Goh, J.C.H., Yeow, R.C.H.: A soft exoskeleton for hand assistive and rehabilitation application using pneumatic actuators with variable stiffness (2015). https://doi.org/10.1109/ICRA.2015.7139889
Yap, H.K., Khin, P.M., Koh, T.H., Sun, Y., Liang, X., Lim, J.H., Yeow, C.-H.: A fully fabric-based bidirectional soft robotic glove for assistance and rehabilitation of hand impaired patients. IEEE Robot Autom Lett 2(3), 1383–1390 (2017). https://doi.org/10.1109/LRA.2017.2669366
Yi, J., Chen, X., Wang, Z.: A three-dimensional-printed soft robotic glove with enhanced ergonomics and force capability. IEEE Robot Autom Lett 3(1), 242–248 (2018). https://doi.org/10.1109/LRA.2017.2737481
Yun, Y., Agarwal, P., Fox, J., Madden, K.E., Deshpande, A.D.: Accurate torque control of finger joints with UT hand exoskeleton through Bowden cable SEA (2016). https://doi.org/10.1109/IROS.2016.7759084
Yun, S.-S., Kang, B.B., Cho, K.-J.: Exo-glove pm: An easily customizable modularized pneumatic assistive glove. IEEE Robot Autom Lett 2(3), 1725–1732 (2017). https://doi.org/10.1109/LRA.2017.2678545
Zeng, H., Li, K., Wei, N., Song, R., Tian, X.: A sEMG-controlled robotic hand exoskeleton for rehabilitation in post-stroke individuals (2018). https://doi.org/10.1109/CBS.2018.8612211
Zhang, F., Yang, L., Fu, Y.: Design of a novel elastic torque sensor for hand injuries rehabilitation based on bowden cable. IEEE Trans Instrum Measurement 68(9), 3184–3192 (2019). https://doi.org/10.1109/TIM.2018.2877851
Zhou, M.A., Ben-Tzvi, P.: Rml glove-an exoskeleton glove mechanism with haptics feedback. IEEE/ASME Trans Mechatron 20(2), 641–652 (2015). https://doi.org/10.1109/TMECH.2014.2305842