A survey on low-power wide area networks for IoT applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gazis, V. (2016). A survey of standards for machine to machine (M2M) and the internet of things (IoT). IEEE Communications Surveys and Tutorials, 19, 1-1.
Xu, J., Yao, J., Wang, L., Ming, Z., Wu, K., & Chen, L. (2018). Narrowband internet of things: Evolutions, technologies, and open issues. IEEE Internet of Things Journal, 5, 1449–1462.
Angelakis, V., Avgouleas, I., Pappas, N., Fitzgerald, E., & Yuan, D. (2016). Allocation of heterogeneous resources of an IoT device to flexible services. IEEE Internet of Things Journal, 3, 691–700.
Abu-Mahfouz, A. M., Hamam, Y., Page, P. R., & Djouani, K. (2016). Real-time dynamic hydraulic model for potable water loss reduction. Procedia Engineering, 7, 99–106.
Abu-Mahfouz, A. M., Olwal, T., Kurien, A., Munda, J. L., & Djouani, K. (2015). Toward developing a distributed autonomous energy management system (DAEMS). In Proceedings of the IEEE AFRICON, Addis Ababa (pp. 1–6).
Kobo, H. I., Abu-Mahfouz, A. M., & Hancke, G. P. (2017). A survey on software-defined wireless sensor networks: Challenges and design requirements. IEEE Access, 5, 1–28.
Ntuli, N., & Abu-Mahfouz, A. M. (2016). A simple security architecture for smart water management system. Procedia Computer Science, 83, 1164–1169.
Louw, J., Niezen, G., Ramotsoela, T. D., & Abu-Mahfouz, A. M. (2016). A key distribution scheme using elliptic curve cryptography in wireless sensor networks. In Proceedings of the 14th IEEE international conference on industrial informatics (INDIN), Poitiers (pp. 1166–1170).
Islam, S. M. R., Kwak, D., Kabir, M. H., Hossain, M., & Kwak, K. S. (2015). The Internet of things for health care: A comprehensive survey. IEEE Access, 3, 678–708.
Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29, 1645–1660.
Miorandi, D., Sicari, S., De Pellegrini, F., & Chlamtac, I. (2012). Internet of things: Vision, applications and research challenges. Ad Hoc Networks, 10, 1497–5116.
Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of things for smart cities. IEEE Internet of Things Journal, 1, 22–32.
Bontu, C . S., Periyalwar, S., & Pecen, M. (2014). Wireless wide-area networks for internet of things: An air interface protocol for IoT and a simultaneous access channel for uplink IoT communication. IEEE Vehicular Technology Magazine, 9, 54–63.
Mudumbe, M. J., & Abu-Mahfouz, A. M. (2015). Smart water meter system for user-centric consumption measurement. In: Proceeding of the IEEE international conference on industrial informatics, Cambridge (pp. 993–998).
Dludla, A. G., Abu-Mahfouz, A. M., Kruger, C. P., & Isaac, J. S. (2013). Wireless sensor networks testbed: ASNTbed. In Proceeding of the IST-Africa Conference, Nairobi (pp. 1–10).
Abu-Mahfouz, A. M., Steyn, L. P., Isaac, S. J., & Hancke, G. P. (2012). Multi-level Infrastructure of Interconnected Testbeds of Large-scale Wireless Sensor Networks (MI2T-WSN). In Proceedings of the international conference on wireless networks—ICWN, Las Vegas, Nevada (pp. 445–450).
Nolan, K. E., Guibene, W., & Kelly, M. Y. (2016). An evaluation of low power wide area network technologies for the internet of things. In International wireless communications and mobile computing conference (IWCMC), Paphos (pp. 439–444).
Zheng, K., Zhao, S., Yang, Z., Xiong, X., & Xiang, W. (2016). Design and implementation of LPWA-based air quality monitoring system. IEEE Access, 4, 3238–3245.
Bizanis, N., & Kuipers, F . A. (2016). SDN and virtualization solutions for the internet of things: A survey. IEEE Access, 4, 5591–5606.
Li, Y., Cheng, X., Cao, Y., Wang, D., & Yang, L. (2018). Smart choice for the smart grid: Narrowband internet of things (NB-IoT). IEEE Internet of Things Journal, 5, 1505–1515.
Vallati, C., Virdis, A., Mingozzi, E., & Stea, G. (2016). Mobile-edge computing come home connecting things in future smart homes using LTE device-to-device communications. IEEE Consumer Electronics Magazine, 5, 77–83.
Mysore Balasubramanya, N., Lampe, L., Vos, G., & Bennett, S. (2016). Low SNR uplink CFO estimation for energy efficient IoT using LTE. IEEE Access, 4, 3936–3950.
Edwards, C. (2016). Over the hills & far away [communications sensors]. Engineering and Technology, 11, 60–63.
So, J., Kim, D., Kim, H., Lee, H., Park, S. (2016). LoRaCloud: LoRa platform on OpenStack. In IEEE NetSoft conference and workshops (NetSoft) (pp. 431–434).
Zheng, K., Zhao, S., Yang, Z., Xiong, X., & Xiang, W. (2016). Design and implementation of LPWA-based air quality monitoring system. IEEE Access, 4, 3238–3245.
Xiong, X., Zheng, K., Xu, R., Xiang, W., & Chatzimisios, P. (2015). Low power wide area machine-to-machine networks: Key techniques and prototype. IEEE Communications Magazine, 53, 64–71.
Andreev, S., Galinina, O., Pyattaev, A., Gerasimenko, M., Tirronen, T., Torsner, J., et al. (2015). Understanding the IoT connectivity landscape: A contemporary M2M radio technology roadmap. IEEE Communications Magazine, 53, 32–40.
Raza, U., Kulkarni, P., & Sooriyabandara, M. (2017). Low power wide area networks: An overview. IEEE Communications Surveys and Tutorials, 23, 1-1.
Centenaro, M., Vangelista, L., Zanella, A., & Zorzi, M. (2016). Long-range communications in unlicensed bands: the rising stars in the IoT and smart city scenarios. IEEE Wireless Communications, 23, 60–67.
Rita Palattella, M., Dohler, M., Grieco, A., Rizzo, G., Torsner, J., Engel, T., et al. (2016). Internet of things in the 5G Era: Enablers, architecture, and business models. IEEE Journal on Selected Areas in Communications, 34, 510–527.
AbuAli, N. (2012). Power management in solar-powered long range WiFi test-bed. In IEEE international conference on communications (ICC), Ottawa, ON (pp. 5983–5987)
Adame, T., Bel, A., Bellalta, B., Barcelo, J., & Oliver, M. (2014). IEEE 802.11AH: The WiFi approach for M2M communications. IEEE Wireless Communications, 21, 144–152.
Ali, A., Hamouda, W., & Uysal, M. (2015). Next generation M2M cellular networks: Challenges and practical considerations. IEEE Communications Magazine, 53, 18–24.
De Sanctis, M., Cianca, E., Araniti, G., Bisio, I., & Prasad, R. (2016). Satellite communications supporting internet of remote things. IEEE Internet of Things Journal, 3, 113–123.
Evans, B., Onireti, O., Spathopoulos, T., & Imran, M. A. (2015). The role of satellites in 5G. In European Signal Processing Conference (EUSIPCO), Nice (pp. 2756–2760).
Chen, X., Rhee, W., & Wang, Z. (2015). Low power sensor design for IoT and mobile healthcare applications. China Communications, 12, 42–54.
Bardyn, J. P., Melly, T., Seller, O., & Sornin, N. (2016). IoT: The era of LPWAN is starting now. In European solid-state circuits conference, Lausanne (pp. 25–30).
Kim, I., & Sahu, S. (2014). Enabling ubiquitous application access for IoT. In EEE/CIC International conference on communications in China–workshops (CIC/ICCC), Shanghai (pp. 1–5).
Shaikh, F. K., Zeadally, S., & Exposito, E. (2017). Enabling technologies for green internet of things. IEEE Systems Journal, 2, 983–994.
LoRa Alliance Technical Marketing Workgroup: LoRaWAN-What is it?. https://www.lora-alliance.org/portals/0/documents/whitepapers/LoRaWAN101.pdf . Nov 2015 Accessed on 13 December 2016.
Mosenia, A., & Jha, N. K. (2017). A comprehensive study of security of internet-of-things. IEEE Transactions on Emerging Topics in Computing, 4, 586–602.
Weightless: Unbeatable secure networking. http://www.weightless.org/keyfeatures/security . Accessed on 03 Mar 2017.
Li, Y., & Chen, M. (2015). Software-defined network function virtualization: A survey. IEEE Access, 3, 2542–2553.
Bera, S., Misra, S., Roy, S. K., & Obaidat, M. S. (2018). Soft-WSN: Software-defined WSN management system for IoT applications. IEEE Systems Journal, 12, 2074–2081.
Sood, K., Yu, S., & Xiang, Y. (2016). Software-defined wireless networking opportunities and challenges for internet-of-things: A review. IEEE Internet of Things Journal, 3, 453–463.
Chatras, B., & Ozog, F. F. (2016). Network functions virtualization: The portability challenge. IEEE Network, 30, 4–8.
Khan, I., Belqasmi, F., Glitho, R., Crespi, N., Morrow, M., & Polakos, P. (2016). Wireless sensor network virtualization: A survey. IEEE Communications Surveys and Tutorial, 18, 553–576.
Nguyen, K., & Cheriet, M. (2016). Virtual edge-based smart community network management. IEEE Internet Computing, 20, 32–41.
Dong, X., Guo, Z., Zhou, X., Qi, H., & Li, K. (2017). AJSR: An efficient multiple jumps forwarding scheme in software-defined WAN. IEEE Access, 5, 3139–3148 (2017).
Dong, X., Guo, Z., Zhou, X., Qi, H., & Li, K. (2017). AJSR: An efficient multiple jumps forwarding scheme in software-defined WAN. IEEE Access, pp. 1–1.
Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232.
Lara-Cueva, R. A., Gordillo, R., Valencia, L., & Benítez, D. S. (2017). Determining the main CSMA parameters for adequate performance of WSN for real-time volcano monitoring system applications. IEEE Sensors Journal, 17, 1493–1502.
Modieginyane, K. M., Letswamotse, B. B., Malekian, R., & Abu-Mahfouz, A. M. (2018). Software defined wireless sensor networks application opportunities for efficient network management: A survey. Computers and Electrical Engineering, 66, 274–287.
Ndiaye, M., Hancke, G. P., & Abu-Mahfouz, A. M. (2017). Software defined networking for improved wireless sensor network management: A survey. Sensors, 17, 1–32.
Masonta, M. T., Mekuria, F., Mzyece, M., & Djouani, K. (2015). Adaptive spectrum decision framework for heterogeneous dynamic spectrum access networks. In The proceedings of the IEEE AFRICON, Addis Ababa (pp. 1–5).
Gao, Y., Qin, Z., Feng, Z., Zhang, Q., Holland, O., & Dohler, M. (2016). Scalable and reliable IoT enabled by dynamic spectrum management for M2M in LTE-A. IEEE Internet of Things Journal, 3, 1135–1145.
Jutila, M. (2016). An adaptive edge router enabling internet of things. IEEE Internet of Things Journal, 3, 1061–1069.
Tentzeris, M. M., Georgiadis, A., & Roselli, L. (2014). Energy harvesting and scavenging [scanning the issue]. Proceedings of the IEEE, 102, 1644–1648.
Gorlatova, M., Sarik, J., Grebla, G., Cong, M., Kymissis, I., & Zussman, G. (2015). Movers and shakers: Kinetic energy harvesting for the internet of things. IEEE Journal on Selected Areas in Communication, 33, 1624–1639.
Kamalinejad, P., Mahapatra, C., Sheng, Z., Mirabbasi, S., Leung, V. C. M., & Guan, Y. L. (2015). Wireless energy harvesting for the internet of things. IEEE Communications Magazine, 553, 102–108.
Mahapatra, C., Sheng, Z., Kamalinejad, P., Leung, V. C. M., & Mirabbasi, S. (2016). Optimal power control in green wireless sensor networks with wireless energy harvesting, wake-up radio and transmission control. IEEE Access, 5, 501–518.
Drubin, C. (2014). The internet of things will drive wireless connected devices to 40.9 billion in 2020. Microwave Journal, 57, 51.
Chen, Y., et al. (2014). Time-reversal wireless paradigm for green internet of things: An overview. IEEE Internet of Things Journal, 1, 81–98.
Zhu, C., Leung, V. C. M., Shu, L., & Ngai, E. C. H. (2015). Green internet of things for smart world. IEEE Access, 3, 2151–2162.
Zhou, Z., Dong, M., Ota, K., Wang, G., & Yang, L. T. (2016). Energy-efficient resource allocation for D2D communications underlaying cloud-RAN-based LTE-a networks. IEEE Internet of Things Journal, 3, 428–438.
Bor, M., Vidler, J.E., & Roedig, U. (2016). LoRa for the internet of things. In International conference on embedded wireless systems and networks, Canada (pp. 361–366).
Bor, M., Roedig, U., Voigt, T., & Alonso, J. (2016). Do LoRa low-power wide-area networks scale?. In International conference on modeling, analysis and simulation of wireless and mobile systems, New York (pp. 59–67).
Margelis, G., Piechocki, R., Kaleshi, D., & Thomas, P. (2015). Low throughput networks for the IoT: Lessons learned from industrial implementations. In IEEE 2nd World forum on internet of things (WF-IoT), Milan (pp. 181–186).
Vejlgaard, B., Lauridsen, M., Nguyen, H., Kovacs, I. Z., Mogensen, P., & Sorensen, M. (2017). Coverage and capacity analysis of Sigfox, LoRa, GPRS, and NB-IoT. In IEEE vehicular technology conference (VTC Spring), Sydney (pp. 1–5).
Weightless: Which Weightless Standard? http://www.weightless.org/about/which-weightless-standard . Accessed on 19 Dec 2016.
Weightless: Ultra-low energy consumption. http://www.weightless.org/keyfeatures/power . Accessed on Feb 21, 2017.
Weightless: Weightless and ETSI partner on LPWAN IoT standards development. http://www.weightless.org/news/weightless-and-etsi-partner-on-lpwan-iot-standards-development . June 14 , 2016. Accessed on 21 Jan 2017.
Abbas, R. A., Al-Sherbaz, A., Bennecer, A., & Picton, P. (2017). A new channel selection algorithm for the weightless-n frequency hopping with lower collision probability. In International conference on the network of the future (NOF), London (pp. 171–175).
Ismail, D., Rahman, M., & Saifullah, A. (2018). Low-power wide-area networks: Opportunities, challenges, and directions. In NSF work-shop on smart and connected communities: Technological foundations, challenges and opportunities (pp. 1–6).
Ingenu: Capacity. http://www.ingenu.com/technology/rpma/capacity/ . Accessed on Feb 21, 2017.
Ingenu: RPMA Technology. http://www.ingenu.com/technology/rpma/ . Accessed on 20 Dec, 2016.
Isaac Brown: A Detailed Breakdown of LPWAN Technologies and Providers. http://web.luxresearchinc.com/hubfs/InsightBreakdownofLPWANTechnologies.pdf?t=1461874447328 . Accessed on 20 Dec, 2016.
WAVIoT: WAVIoT NB-FI LPWAN Technology. http://dgmatics.com/wp.pdf . 6 June 2016. Accessed on 20 Dec, 2016.
Weyn, M., Ergeerts, G., Berkvens, R., Wojciechowski, B., & Tabakov, T. (2015). DASH7 alliance protocol 1.0: Low-power, mid-range sensor and actuator communication. In IEEE Conference on Standards for Communications and Networking (CSCN), Tokyo (pp. 54–59).
DASH Alliance: Why DASH7? http://www.dash7-alliance.org/why-dash7/ . Accessed on 2 Jan, 2017.
Tomás, J. P. (2018). Operators in Korea, Netherlands deploy LoRa networks for IoT 2016. http://www.rcrwireless.com/20160704/carriers/operatorskoreanetherlandsdeploy-loranetworks-iot-tag23 . Accessed on 20 Nov, 2018.
Condoluci, M., Araniti, G., Mahmoodi, T., & Dohler, M. (2016). Enabling the IoT machine age with 5G: Machine-type multicast services for innovative real-time applications. IEEE Access, 4, 5555–5569.
GSM: Extended Coverage–GSM–Internet of Things (EC-GSM-IoT ). http://www.gsma.com/connectedliving/extended-coverage-gsm-internet-of-things-ec-gsm-iot/ . Accessed on 22 Dec, 2016.
Balasubramanya, N. M., Lampe, L., Vos, G., & Bennett, S. (2017). On timing reacquisition and enhanced primary synchronization signal (ePSS) design for energy efficient 3GPP LTE MTC. IEEE Transactions on Mobile Computing, 16, 2292–2305.
Gozalvez, J. (2016). New 3GPP Standard for IoT [Mobile Radio]. IEEE Vehicular Technology Magazine, 11, 14–20.
Ratasuk, R., Vejlgaard, B., Mangalvedhe, N., & Ghosh, A. (2016). NB-IoT system for M2M communication. In IEEE Wireless Communications and Networking Conference Workshops (WCNCW) (pp. 428–432).
Ijaz, A., Zhang, L., Grau, M., Mohamed, A., Vural, S., Quddus, A. U., et al. (2016). Enabling massive IoT in 5G and beyond systems: PHY radio frame design considerations. IEEE Access, 4, 3322–3339.
Adame, T., Bel, A., Bellalta, B., Barcelo, J., & Oliver, M. (2014). IEEE 802.11AH: The WiFi approach for M2M communications. IEEE Wireless Communications, 4, 144–152.
m2comm-semi: A Cellular-type Protocol Innovation for the Internet of Things. http://www.theinternetofthings.eu/sites/default/files/%5Buser-name%5D/M2C%20Whitepaper%20for%20IoT%20Connectivity.pdf . January 2015. Accessed on 10 February 2017.
Aust, S., Prasad, R. V., & Niemegeers, I. G. M. M. (2015). Outdoor long-range WLANs: A lesson for IEEE 802.11ah. IEEE Communications Surveys and Tutorials, 17, 1761–1775.
Yin, Y., Yan, Y., Wei, C., & Yang, S. (2015). A low-power low-cost GFSK demodulator with a robust frequency offset tolerance. IEEE Transactions on Circuits and Systems II: Express Briefs, 61, 696–700.
Mahesh, R. U., & Chaturvedi, A. K. (2010). Closed form BER expressions for BPSK OFDM systems with frequency offset. IEEE Communications Letters, 14, 731–733.
Murota, K. (1985). Spectrum efficiency of GMSK land mobile radio. IEEE Transactions on Vehicular Technology, 34, 69–75.
Birk, Y. (2010). Rejuvenating ALOHA: Motivation, approaches and insights. In IEEE Information Theory Workshop on Information Theory, Cairo (pp. 1–5).
ABI Reseach: IoT Growth Is Non-Cellular LPWA’s Greatest Ally, But Its Biggest Foe Is Lack of Standards. https://www.abiresearch.com/press/iot-growth-non-cellular-lpwas-greatest-ally-its-bi/ . Accessed on 10 Feb 2017.
OpenStand: Open Standards vs. Proprietary: Are Open Standards Really the Wave of the Future for IoT?. https://open-stand.org/open-standards-vs-proprietary-are-open-standards-really-the-wave-of-the-future-for-iot/ . Accessed on 10 Feb, 2017.
Fuhong, L., Qian, L., Xianwei, Z., Yueyun, C., & Daochao, H. (2014). Cooperative differential game for model energy-bandwidth efficiency tradeoff in the internet of things. China Communications, 11, 92–102.
Semasinghe, P., Maghsudi, S., & Hossain, E. (2017). Game theoretic mechanisms for resource management in massive wireless IoT systems. IEEE Communications Magazine, 55, 121–127.
Qian, J., Gao, F., Wang, G., Jin, S., & Zhu, H. B. (2017). Noncoherent detections for ambient backscatter system. IEEE Transactions on Wireless Communications, 16, 1412–1422.
Dong, Y., Wang, J., Shim, B., & Kim, D. I. (2016). DEARER: A distance-and-energy-aware routing with energy reservation for energy harvesting wireless sensor networks. IEEE Journal on Selected Areas in Communications, 34, 3798–3813.
Goursaud, C., & Gorce, J. M. (2015). Dedicated networks for IoT: PHY / MAC state of the art and challenges. EAI Endorsed Transactions on Internet of Things, 15, 1–11.
Proakis, J., & Salehi, M. (2008). Digital Communications (5th ed.). New York: McGraw Hill.
Kaur, N., & Sood, S. K. (2017). An energy-efficient architecture for the internet of things (IoT). IEEE Systems Journal, 11, 796–805.
Yi, G., Park, J. H., & Choi, S. (2016). Energy-efficient distributed topology control algorithm for low-power IoT communication networks. IEEE Access, 2016(4), 9193–9203.
Srivastava, V., et al. (2005). Using game theory to analyze wireless ad hoc networks. IEEE Communications Surveys and Tutorials, 7, 46–56.
Schmitendorf, W. (1973). Cooperative games and vector-valued criteria problems. IEEE Transactions on Automatic Control, 18, 139–144.
Meenakshi, K., Singh, N. P. (2016). A comparative study of cooperative and non-cooperative game theory in network selection. In International conference on computational techniques in information and communication technologies (ICCTICT), New Delhi (pp. 612–617).
Na, J., Lin, K. J., Huang, Z., & Zhou, S. (2015). An evolutionary game approach on IoT service selection for balancing device energy consumption. In IEEE 12th international conference on e-business engineering (pp. 331–338).
Hu, S., Guo, H., Jin, C., Huang, Y., Yu, B., & Li, S. (2016). Frequency-domain oversampling for cognitive CDMA systems: Enabling robust and massive multiple access for internet of things. IEEE Access, 4, 4583–4589.
Zhang, D., Zhou, Z., Mumtaz, S., Rodriguez, J., & Sato, T. (2016). One integrated energy efficiency proposal for 5G IoT communications. IEEE Internet of Things Journal, 3, 1346–1354.
Al-Kashoash, H., & Kemp, A. H. (2017). Comparison of 6LoWPAN and LPWAN for the internet of things. Australian Journal of Electrical and Electronics Engineering, 13, 268–274.
Cheng, C., Lu, R., Petzoldt, A., & Takagi, T. (2017). Securing the internet of things in a quantum world. IEEE Communications Magazine, 55, 116–120.
LinkLabs: 3 Reasons Why IPv6 Is Important For the Internet Of Things. https://www.link-labs.com/blog/why-ipv6-is-important-for-internet-of-things . Accessed on 20 Nov, 2018.