A survey on joint tracking using expectation–maximization based techniques

Information Fusion - Tập 30 - Trang 52-68 - 2016
Hua Lan1,2, Xuezhi Wang3, Quan Pan1,2, Feng Yang1,2, Zengfu Wang1,2, Yan Liang1,2
1School of Automation, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, PR China
2Key Laboratory of Information Fusion Technology, Ministry of Education, Xi’an, Shaanxi 710072, PR China
3School of Electrical & Computer Engineering, RMIT University, Melbourne 3000, Australia

Tài liệu tham khảo

Bar-Shalom, 2001 Hall, 2001 Persson, 2014, Complexity: the dark side of network-centric warfare, Cogn. Technol. Work, 16, 103, 10.1007/s10111-012-0248-1 Li, 2005, Survey of maneuvering target tracking. Part V: multiple-model methods, IEEE Trans. Aerosp. Electron. Syst., 41, 1255, 10.1109/TAES.2005.1561886 Julier, 2004, Unscented filtering and nonlinear estimation, Proc. IEEE, 92, 401, 10.1109/JPROC.2003.823141 Arulampalam, 2002, A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Trans. Signal Process., 50, 174, 10.1109/78.978374 Terejanu, 2011, Adaptive Gaussian sum filter for nonlinear Bayesian estimation, IEEE Trans. Autom. Control, 56, 2151, 10.1109/TAC.2011.2141550 Blackman, 2004, Multiple hypothesis tracking for multiple target tracking, IEEE Aerosp. Electron. Syst. Mag., 19, 5, 10.1109/MAES.2004.1263228 Reid, 1979, Algorithm for tracking multiple targets, IEEE Trans. Autom. Control, 24, 843, 10.1109/TAC.1979.1102177 Willett, 2002, PMHT: problems and some solutions, IEEE Trans. Aerosp. Electron. Syst., 38, 738, 10.1109/TAES.2002.1039396 Fortmann, 1983, Sonar tracking of multiple targets using joint probabilistic data association, IEEE J. Ocean. Eng., 8, 173, 10.1109/JOE.1983.1145560 Yu, 2009, Multiple-target tracking by spatiotemporal monte carlo Markov chain data association, IEEE Trans. Pattern Anal. Mach. Intell., 31, 2196, 10.1109/TPAMI.2008.253 Särkkä, 2007, Rao-blackwellized particle filter for multiple target tracking, Inf. Fusion, 8, 2, 10.1016/j.inffus.2005.09.009 Mahler, 2013, “Statistics 102” for multisource-multitarget detection and tracking, IEEE J. Select. Top. Signal Process., 7, 376, 10.1109/JSTSP.2013.2253084 Li, 2004, A survey of maneuvering target tracking: approximation techniques for nonlinear filtering, volume 5428, 537 Pulford, 2005, Taxonomy of multiple target tracking methods, IEE Proc.: Radar, Sonar Navigat., 152, 291 Cox, 1993, Review of statistical data association techniques for motion correspondence, Int. J. Comput. Vis., 10, 53, 10.1007/BF01440847 Smith, 2006, Approaches to multisensor data fusion in target tracking: a survey, IEEE Trans. Knowl. Data Eng., 18, 1696, 10.1109/TKDE.2006.183 Khaleghi, 2013, Multisensor data fusion: a review of the state-of-the-art, Inf. Fusion, 14, 28, 10.1016/j.inffus.2011.08.001 Lauro, 2015, Context-based information fusion: a survey and discussion, Inf. Fusion, 25, 16, 10.1016/j.inffus.2015.01.002 Dempster, 1977, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc., Ser. B, 39, 1 Li, 2007, Optimal Bayes joint decision and estimation, 1 Cao, 2015, Conditional joint decision and estimation with application to joint tracking and classification, IEEE Trans. Syst., Man, Cybern.: Syst., 1 Li, 2007, Joint tracking and classification based on Bayes joint decision and estimation, 1 Lan, 2014, An EM algorithm for multipath state estimation in OTHR target tracking, IEEE Trans. Signal Process., 62, 2814, 10.1109/TSP.2014.2318134 Lan, 2013, Joint estimation and identification for stochastic systems with unknown inputs, IET Control Theory Appl., 7, 1377, 10.1049/iet-cta.2013.0996 Lan, 2014, A distributed expectation–maximization algorithm for OTHR multipath target tracking, 1 Lan, 2014, Distributed joint estimation and identification for sensor networks with unknown inputs, 1 Lan, 2015, Joint OTHR multipath state estimation with unknown ionospheric heights, 753 Tzikas, 2008, The variational approximation for Bayesian inference: lift after the EM algorithm, IEEE Signal Process. Mag., 25, 131, 10.1109/MSP.2008.929620 C.M, 2006 Cosme, 2012, Smoothing problems in a Bayesian framework and their linear Gaussian solutions, Mon. Weather Rev., 140, 683, 10.1175/MWR-D-10-05025.1 Gupta, 2010, Theory and use of the EM algorithm, Found. Trends Signal Process., 4, 223, 10.1561/2000000034 Geoffrey, 2008 Wu, 1983, On the convergence properties of the EM algorithm, Ann. Stat., 11, 95, 10.1214/aos/1176346060 Balakrishnan, 2014, Statistical guarantees for the EM algorithm: from population to sample-based analysis, EprintArxiv Chretien, 2008, On EM algorithms and their proximal generalizations, ESAIM - Prob. Stat., 12, 308, 10.1051/ps:2007041 Tseng, 2004, An analysis of the EM algorithm and entropy-like proximal point methods, Math. Oper. Res., 29, 27, 10.1287/moor.1030.0073 Bouveyron, 2012, Theoretical and practical considerations on the convergence properties of the Fisher-EM algorithm, J. Multivar. Anal., 109, 29, 10.1016/j.jmva.2012.02.012 Graca, 2007, Expectation maximization and posterior constraints., 1 Ahn, 2003, A constrained EM algorithm for principal component analysis, Neural Comput., 15, 57, 10.1162/089976603321043694 Meng, 1994, On the global and component wise rates of convergence of the EM agorithm, Linear Algebra Appl., 19, 413, 10.1016/0024-3795(94)90363-8 Melnykov, 2012, Initializing the EM algorithm in Gaussian mixture models with an unknown number of components, Comput. Stat. Data Anal., 56, 1381, 10.1016/j.csda.2011.11.002 Fraley, 1998, Algorithms for model-based Gaussian hierarchical clustering, SIAM J. Sci. Comput., 20, 270, 10.1137/S1064827596311451 Biernacki, 2003, Choosing starting values for the EM algorithm for getting the highest likehood in multivariate Gaussian mixture models, Comput. Stat. Data Anal., 41, 561, 10.1016/S0167-9473(02)00163-9 Maitra, 2009, Initializing partition-optimization algorithms, IEEE/ACM Trans. Comput. Biol. Bioinform., 6, 144, 10.1109/TCBB.2007.70244 Roche, 2011, EM algorithm and variants: an informal tutorial, ArXiv e-prints Fessler, 1994, Space-alternating generalized expectation-maximization algorithm, IEEE Trans. Signal Process., 42, 2664, 10.1109/78.324732 Meng, 1993, Maximum likelihood estimation via the ECM algorithm: a general framework, Biometrika, 80, 267, 10.1093/biomet/80.2.267 C.H., 1994, The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence, Biometrika, 81, 633, 10.1093/biomet/81.4.633 He, 2012, The dynamic expectation-conditional maximization either algorithm, J. R. Stat. Soc.: Series B (Stat. Methodol.), 74, 313, 10.1111/j.1467-9868.2011.01013.x Greg, 1990, A monte carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms, J. Am. Stat. Assoc., 85, 699, 10.1080/01621459.1990.10474930 Liu, 1998, Parameter expansion to accelerate EM: the PX-EM algorithm, Biometrika, 85, 755, 10.1093/biomet/85.4.755 Mortaza, 1993, Conjugate gradient acceleration of the EM algorithm, J. Am. Stat. Assoc., 88, 221 Neal, 1998, A view of the EM algorithm that justifies incremental, sparse, and other variants, volume 89, 355 Kowalczyk, 2005, Newscast EM, 713 Cappé, 2009, On-line expectation-maximization algorithm for latent data models, J. R. Stat. Soc.: Ser. B (Stat. Methodol.), 71, 593, 10.1111/j.1467-9868.2009.00698.x Denœux, 2011, Maximum likelihood from fuzzy data using the EM algorithm, Fuzzy Sets Syst., 183, 72, 10.1016/j.fss.2011.05.022 Denœux, 2013, Maximum likelihood estimation from uncertain data in the belief function framework, IEEE Trans. Knowl. Data Eng., 25, 119, 10.1109/TKDE.2011.201 Jiang, 2015, The E-MS algorithm: model selection with incomplete data, J. Am. Stat. Assoc., 110, 1136, 10.1080/01621459.2014.948545 Shumway, 1982, An approach to time series smoothing and forecasting using the EM algorithm, J. Time Ser. Anal., 3, 253, 10.1111/j.1467-9892.1982.tb00349.x Ghahramani, 1996, Parameter estimation for linear dynamical systems Zia, 2008, An EM algorithm for nonlinear state estimation with model uncertainties, IEEE Trans. Signal Process., 56, 921, 10.1109/TSP.2007.907883 Karimi, 2013, An approximate expectation maximization algorithm for estimating parameters, noise variances, and stochastic disturbance intensities in nonlinear dynamic models, Ind. Eng. Chem. Res., 52, 18303, 10.1021/ie4023989 Lei, 2007, Expectation maximization (EM) algorithm-based nonlinear target tracking with adaptive state transition matrix and noise covariance, 212 Özkan, 2015, Recursive maximum likelihood identification of jump Markov nonlinear systems, IEEE Trans. Signal Process., 63, 754, 10.1109/TSP.2014.2385039 Logothetis, 1999, Expectation maximization algorithms for MAP estimation of jump Markov linear systems, IEEE Trans. Signal Process., 47, 2139, 10.1109/78.774753 Johnston, 2001, An improvement to the interacting multiple model (IMM) algorithm, IEEE Trans. Signal Process., 49, 2909, 10.1109/78.969500 Pulford, 2002, MAP estimation of target manoeuvre sequence with the expectation-maximization algorithm, IEEE Trans. Aerosp. Electron. Syst., 38, 367, 10.1109/TAES.2002.1008972 Logothetis, 2002, A Bayesian EM algorithm for optimal tracking of a maneuvering target in clutter, Signal Process., 82, 473, 10.1016/S0165-1684(01)00198-0 Ruan, 2004, Multiple model PMHT and its application to the benchmark radar tracking problem, IEEE Trans. Aerosp. Electron. Syst., 40, 1337, 10.1109/TAES.2004.1386885 Zaveri, 2007, Robust neural-network-based data association and multiple model-based tracking of multiple point targets, IEEE Trans. Syst., Man, Cybern., Part C: Appl. Rev., 37, 337, 10.1109/TSMCC.2007.893281 Streit, 2010 Long, 2011, Improved probabilistic multi-hypothesis tracker for multiple target tracking with switching attribute states, IEEE Trans. Signal Process., 59, 5721, 10.1109/TSP.2011.2167616 Wieneke, 2012, A PMHT approach for extended objects and object groups, IEEE Trans. Aerosp. Electron. Syst., 48, 2349, 10.1109/TAES.2012.6237596 Pulford, 1997, An expectation-maximisation tracker for multiple observations of a single target in clutter, 4997 Molnar, 1998, Application of the EM algorithm for the multitarget/multisensor tracking problem, IEEE Trans. Signal Process., 46, 115, 10.1109/78.651193 Frenkel, 1999, Recursive expectation-maximization (EM) algorithms for time-varying parameters with applications to multiple target tracking, IEEE Trans. Signal Process., 47, 306, 10.1109/78.740104 Deming, 2009, Multi-target/multi-sensor tracking using only range and doppler measurements, IEEE Trans. Aerosp. Electron. Syst., 45, 593, 10.1109/TAES.2009.5089543 Li, 2010, Joint data association, registration, and fusion using EM-KF, IEEE Trans. Aerosp. Electron. Syst., 46, 496, 10.1109/TAES.2010.5461637 Huang, 2012, A pseudo-measurement approach to simultaneous registration and track fusion, IEEE Trans. Aerosp. Electron. Syst., 48, 2315, 10.1109/TAES.2012.6237594 Li, 2010, Simultaneous registration and fusion of radar and ESM by EM-EKS, 1130 Huang, 2005, An expectation-maximization-based interacting multiple model approach for cooperative driving systems, IEEE Trans. Intell. Transp. Syst., 6, 206, 10.1109/TITS.2005.848366 Nowak, 2003, Distributed EM algorithms for density estimation and clustering in sensor networks, IEEE Trans. Signal Process., 51, 2245, 10.1109/TSP.2003.814623 Gu, 2008, Distributed EM algorithm for Gaussian mixtures in sensor networks, IEEE Trans. Neural Netw., 19, 1154, 10.1109/TNN.2008.915110 Weng, 2011, Diffusion-based EM algorithm for distributed estimation of Gaussian mixtures in wireless sensor networks, Sensors, 11, 6297, 10.3390/s110606297 Morral, 2012, On-line gossip-based distributed expectation maximization algorithm, 305 Zhu, 2015, A joint data association, registration, and fusion approach for distributed tracking, Inf. Sci., 324, 186, 10.1016/j.ins.2015.06.042 He, 2014, Joint class identification and target classification using multiple HMMs, IEEE Trans. Aerosp. Electron. Syst., 50, 1269, 10.1109/TAES.2014.120672 Kantas, 2012, Distributed maximum likelihood for simultaneous self-localization and tracking in sensor networks, IEEE Trans. Signal Process., 60, 5038, 10.1109/TSP.2012.2205923 Xia, 2012, Bayesian track-before-detect algorithm with target amplitude fluctuation based on expectation-maximisation estimation, IET Radar Sonar Navigat., 6, 719, 10.1049/iet-rsn.2011.0297 Liu, 2007, Multitarget tracking in distributed sensor networks, IEEE Signal Process. Mag., 24, 36, 10.1109/MSP.2007.361600 Akyildiz, 2002, A survey on sensor networks, IEEE Commun. Mag., 40, 102, 10.1109/MCOM.2002.1024422 Dimakis, 2010, Gossip algorithms for distributed signal processing, Proc. IEEE, 98, 1847, 10.1109/JPROC.2010.2052531 Pereira, 2013, A diffusion-based EM algorithm for distributed estimation in unreliable sensor networks, IEEE Signal Process. Lett., 20, 595, 10.1109/LSP.2013.2260329 Feng, 2015, Cooperative localization in WSNs using Gaussian mixture modeling: Distributed ECM algorithms, IEEE Trans. Signal Process., 63, 1448, 10.1109/TSP.2015.2394300 Hugh, 2006, Simultaneous localization and mapping: Part I, IEEE Robot. Autom. Mag., 13, 99, 10.1109/MRA.2006.1638022 Haykin, 2006, Cognitive radar: a way of the future, IEEE Signal Process. Mag., 23, 30, 10.1109/MSP.2006.1593335 Beal, 1998 Winn, 2003 Winn, 2005, Variational message passing, J. Mach. Learn. Res., 6, 661 Hoffman, 2013, Stochastic variational inference, J. Mach. Learn. Res., 14, 1303 Sung, 2008, Latent-space variational bayes, IEEE Trans. Pattern Anal. Mach. Intell., 30, 2236, 10.1109/TPAMI.2008.157 Fox, 2012, A tutorial on variational Bayesian inference, Artif. Intell. Rev., 38, 85, 10.1007/s10462-011-9236-8 Sun, 2013, A review of deterministic approximate inference techniques for Bayesian machine learning, Neural Comput. Appl., 23, 2039, 10.1007/s00521-013-1445-4 midl, 2008, Variational Bayesian filtering, IEEE Trans. Signal Process., 56, 5020, 10.1109/TSP.2008.928969 Särkkä, 2009, Recursive noise adaptive Kalman filtering by variational Bayesian approximations, IEEE Trans. Autom. Control, 54, 596, 10.1109/TAC.2008.2008348 Juha, 2015, Gaussian filtering and variational approximations for Bayesian smoothing in continuous-discrete stochastic dynamic systems, Signal Process., 111, 124, 10.1016/j.sigpro.2014.12.013 Mbalawata, 2015, Adaptive metropolis algorithm using variational Bayesian adaptive Kalman filter, Comput. Stat. Data Anal., 83, 101, 10.1016/j.csda.2014.10.006 Li, 2012, State estimation for jump Markov linear systems by variational Bayesian approximation, IET Control Theory Appl., 6, 319, 10.1049/iet-cta.2011.0167 Shen, 2015, An interacting multiple model approach for state estimation with non-Gaussian noise using a variational Bayesian method, Asian J. Control, 17, 1424, 10.1002/asjc.1055 Li, 2013, PHD filter for multi-target tracking by variational Bayesian approximation, 7815 Yang, 2013, An improved multi-target tracking algorithm based on CBMeMBer filter and variational Bayesian approximation, Signal Process., 93, 2510, 10.1016/j.sigpro.2013.03.027 Miguel, 2012, Overlapping mixtures of Gaussian processes for the data association problem, Pattern Recogn., 45, 1386, 10.1016/j.patcog.2011.10.004 Ryan, 2014, A complete variational tracker, 496 Tinne., 2011, Shape-based online multitarget tracking and detection for targets causing multiple measurements: variational Bayesian clustering and lossless data association, IEEE Trans. Pattern Anal. Mach. Intell., 33, 2477, 10.1109/TPAMI.2011.83 Williams, 2015, An efficient, variational approximation of the best fitting multi-Bernoulli filter, IEEE Trans. Signal Process., 63, 258, 10.1109/TSP.2014.2370946 Vercauteren, 2004, Joint multiple target tracking and classification in collaborative sensor networks, IEEE J. Select. Areas Commun., 23, 714, 10.1109/JSAC.2005.843540 Challa, 2001, Joint target tracking and classification using radar and ESM sensors, IEEE Trans. Aerosp. Electron. Syst., 37, 1039, 10.1109/7.953266 Vo, 2011, Bernoulli forward-backward smoothing for joint target detection and tracking, IEEE Trans. Signal Process., 59, 4473, 10.1109/TSP.2011.2158427 Vo, 2012, Multi-sensor joint detection and tracking with the Bernoulli filter, IEEE Trans. Aerosp. Electron. Syst., 48, 1385, 10.1109/TAES.2012.6178069 Liu, 2013 Yang, 2007