A survey on joint tracking using expectation–maximization based techniques
Tài liệu tham khảo
Bar-Shalom, 2001
Hall, 2001
Persson, 2014, Complexity: the dark side of network-centric warfare, Cogn. Technol. Work, 16, 103, 10.1007/s10111-012-0248-1
Li, 2005, Survey of maneuvering target tracking. Part V: multiple-model methods, IEEE Trans. Aerosp. Electron. Syst., 41, 1255, 10.1109/TAES.2005.1561886
Julier, 2004, Unscented filtering and nonlinear estimation, Proc. IEEE, 92, 401, 10.1109/JPROC.2003.823141
Arulampalam, 2002, A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Trans. Signal Process., 50, 174, 10.1109/78.978374
Terejanu, 2011, Adaptive Gaussian sum filter for nonlinear Bayesian estimation, IEEE Trans. Autom. Control, 56, 2151, 10.1109/TAC.2011.2141550
Blackman, 2004, Multiple hypothesis tracking for multiple target tracking, IEEE Aerosp. Electron. Syst. Mag., 19, 5, 10.1109/MAES.2004.1263228
Reid, 1979, Algorithm for tracking multiple targets, IEEE Trans. Autom. Control, 24, 843, 10.1109/TAC.1979.1102177
Willett, 2002, PMHT: problems and some solutions, IEEE Trans. Aerosp. Electron. Syst., 38, 738, 10.1109/TAES.2002.1039396
Fortmann, 1983, Sonar tracking of multiple targets using joint probabilistic data association, IEEE J. Ocean. Eng., 8, 173, 10.1109/JOE.1983.1145560
Yu, 2009, Multiple-target tracking by spatiotemporal monte carlo Markov chain data association, IEEE Trans. Pattern Anal. Mach. Intell., 31, 2196, 10.1109/TPAMI.2008.253
Särkkä, 2007, Rao-blackwellized particle filter for multiple target tracking, Inf. Fusion, 8, 2, 10.1016/j.inffus.2005.09.009
Mahler, 2013, “Statistics 102” for multisource-multitarget detection and tracking, IEEE J. Select. Top. Signal Process., 7, 376, 10.1109/JSTSP.2013.2253084
Li, 2004, A survey of maneuvering target tracking: approximation techniques for nonlinear filtering, volume 5428, 537
Pulford, 2005, Taxonomy of multiple target tracking methods, IEE Proc.: Radar, Sonar Navigat., 152, 291
Cox, 1993, Review of statistical data association techniques for motion correspondence, Int. J. Comput. Vis., 10, 53, 10.1007/BF01440847
Smith, 2006, Approaches to multisensor data fusion in target tracking: a survey, IEEE Trans. Knowl. Data Eng., 18, 1696, 10.1109/TKDE.2006.183
Khaleghi, 2013, Multisensor data fusion: a review of the state-of-the-art, Inf. Fusion, 14, 28, 10.1016/j.inffus.2011.08.001
Lauro, 2015, Context-based information fusion: a survey and discussion, Inf. Fusion, 25, 16, 10.1016/j.inffus.2015.01.002
Dempster, 1977, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc., Ser. B, 39, 1
Li, 2007, Optimal Bayes joint decision and estimation, 1
Cao, 2015, Conditional joint decision and estimation with application to joint tracking and classification, IEEE Trans. Syst., Man, Cybern.: Syst., 1
Li, 2007, Joint tracking and classification based on Bayes joint decision and estimation, 1
Lan, 2014, An EM algorithm for multipath state estimation in OTHR target tracking, IEEE Trans. Signal Process., 62, 2814, 10.1109/TSP.2014.2318134
Lan, 2013, Joint estimation and identification for stochastic systems with unknown inputs, IET Control Theory Appl., 7, 1377, 10.1049/iet-cta.2013.0996
Lan, 2014, A distributed expectation–maximization algorithm for OTHR multipath target tracking, 1
Lan, 2014, Distributed joint estimation and identification for sensor networks with unknown inputs, 1
Lan, 2015, Joint OTHR multipath state estimation with unknown ionospheric heights, 753
Tzikas, 2008, The variational approximation for Bayesian inference: lift after the EM algorithm, IEEE Signal Process. Mag., 25, 131, 10.1109/MSP.2008.929620
C.M, 2006
Cosme, 2012, Smoothing problems in a Bayesian framework and their linear Gaussian solutions, Mon. Weather Rev., 140, 683, 10.1175/MWR-D-10-05025.1
Gupta, 2010, Theory and use of the EM algorithm, Found. Trends Signal Process., 4, 223, 10.1561/2000000034
Geoffrey, 2008
Wu, 1983, On the convergence properties of the EM algorithm, Ann. Stat., 11, 95, 10.1214/aos/1176346060
Balakrishnan, 2014, Statistical guarantees for the EM algorithm: from population to sample-based analysis, EprintArxiv
Chretien, 2008, On EM algorithms and their proximal generalizations, ESAIM - Prob. Stat., 12, 308, 10.1051/ps:2007041
Tseng, 2004, An analysis of the EM algorithm and entropy-like proximal point methods, Math. Oper. Res., 29, 27, 10.1287/moor.1030.0073
Bouveyron, 2012, Theoretical and practical considerations on the convergence properties of the Fisher-EM algorithm, J. Multivar. Anal., 109, 29, 10.1016/j.jmva.2012.02.012
Graca, 2007, Expectation maximization and posterior constraints., 1
Ahn, 2003, A constrained EM algorithm for principal component analysis, Neural Comput., 15, 57, 10.1162/089976603321043694
Meng, 1994, On the global and component wise rates of convergence of the EM agorithm, Linear Algebra Appl., 19, 413, 10.1016/0024-3795(94)90363-8
Melnykov, 2012, Initializing the EM algorithm in Gaussian mixture models with an unknown number of components, Comput. Stat. Data Anal., 56, 1381, 10.1016/j.csda.2011.11.002
Fraley, 1998, Algorithms for model-based Gaussian hierarchical clustering, SIAM J. Sci. Comput., 20, 270, 10.1137/S1064827596311451
Biernacki, 2003, Choosing starting values for the EM algorithm for getting the highest likehood in multivariate Gaussian mixture models, Comput. Stat. Data Anal., 41, 561, 10.1016/S0167-9473(02)00163-9
Maitra, 2009, Initializing partition-optimization algorithms, IEEE/ACM Trans. Comput. Biol. Bioinform., 6, 144, 10.1109/TCBB.2007.70244
Roche, 2011, EM algorithm and variants: an informal tutorial, ArXiv e-prints
Fessler, 1994, Space-alternating generalized expectation-maximization algorithm, IEEE Trans. Signal Process., 42, 2664, 10.1109/78.324732
Meng, 1993, Maximum likelihood estimation via the ECM algorithm: a general framework, Biometrika, 80, 267, 10.1093/biomet/80.2.267
C.H., 1994, The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence, Biometrika, 81, 633, 10.1093/biomet/81.4.633
He, 2012, The dynamic expectation-conditional maximization either algorithm, J. R. Stat. Soc.: Series B (Stat. Methodol.), 74, 313, 10.1111/j.1467-9868.2011.01013.x
Greg, 1990, A monte carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms, J. Am. Stat. Assoc., 85, 699, 10.1080/01621459.1990.10474930
Liu, 1998, Parameter expansion to accelerate EM: the PX-EM algorithm, Biometrika, 85, 755, 10.1093/biomet/85.4.755
Mortaza, 1993, Conjugate gradient acceleration of the EM algorithm, J. Am. Stat. Assoc., 88, 221
Neal, 1998, A view of the EM algorithm that justifies incremental, sparse, and other variants, volume 89, 355
Kowalczyk, 2005, Newscast EM, 713
Cappé, 2009, On-line expectation-maximization algorithm for latent data models, J. R. Stat. Soc.: Ser. B (Stat. Methodol.), 71, 593, 10.1111/j.1467-9868.2009.00698.x
Denœux, 2011, Maximum likelihood from fuzzy data using the EM algorithm, Fuzzy Sets Syst., 183, 72, 10.1016/j.fss.2011.05.022
Denœux, 2013, Maximum likelihood estimation from uncertain data in the belief function framework, IEEE Trans. Knowl. Data Eng., 25, 119, 10.1109/TKDE.2011.201
Jiang, 2015, The E-MS algorithm: model selection with incomplete data, J. Am. Stat. Assoc., 110, 1136, 10.1080/01621459.2014.948545
Shumway, 1982, An approach to time series smoothing and forecasting using the EM algorithm, J. Time Ser. Anal., 3, 253, 10.1111/j.1467-9892.1982.tb00349.x
Ghahramani, 1996, Parameter estimation for linear dynamical systems
Zia, 2008, An EM algorithm for nonlinear state estimation with model uncertainties, IEEE Trans. Signal Process., 56, 921, 10.1109/TSP.2007.907883
Karimi, 2013, An approximate expectation maximization algorithm for estimating parameters, noise variances, and stochastic disturbance intensities in nonlinear dynamic models, Ind. Eng. Chem. Res., 52, 18303, 10.1021/ie4023989
Lei, 2007, Expectation maximization (EM) algorithm-based nonlinear target tracking with adaptive state transition matrix and noise covariance, 212
Özkan, 2015, Recursive maximum likelihood identification of jump Markov nonlinear systems, IEEE Trans. Signal Process., 63, 754, 10.1109/TSP.2014.2385039
Logothetis, 1999, Expectation maximization algorithms for MAP estimation of jump Markov linear systems, IEEE Trans. Signal Process., 47, 2139, 10.1109/78.774753
Johnston, 2001, An improvement to the interacting multiple model (IMM) algorithm, IEEE Trans. Signal Process., 49, 2909, 10.1109/78.969500
Pulford, 2002, MAP estimation of target manoeuvre sequence with the expectation-maximization algorithm, IEEE Trans. Aerosp. Electron. Syst., 38, 367, 10.1109/TAES.2002.1008972
Logothetis, 2002, A Bayesian EM algorithm for optimal tracking of a maneuvering target in clutter, Signal Process., 82, 473, 10.1016/S0165-1684(01)00198-0
Ruan, 2004, Multiple model PMHT and its application to the benchmark radar tracking problem, IEEE Trans. Aerosp. Electron. Syst., 40, 1337, 10.1109/TAES.2004.1386885
Zaveri, 2007, Robust neural-network-based data association and multiple model-based tracking of multiple point targets, IEEE Trans. Syst., Man, Cybern., Part C: Appl. Rev., 37, 337, 10.1109/TSMCC.2007.893281
Streit, 2010
Long, 2011, Improved probabilistic multi-hypothesis tracker for multiple target tracking with switching attribute states, IEEE Trans. Signal Process., 59, 5721, 10.1109/TSP.2011.2167616
Wieneke, 2012, A PMHT approach for extended objects and object groups, IEEE Trans. Aerosp. Electron. Syst., 48, 2349, 10.1109/TAES.2012.6237596
Pulford, 1997, An expectation-maximisation tracker for multiple observations of a single target in clutter, 4997
Molnar, 1998, Application of the EM algorithm for the multitarget/multisensor tracking problem, IEEE Trans. Signal Process., 46, 115, 10.1109/78.651193
Frenkel, 1999, Recursive expectation-maximization (EM) algorithms for time-varying parameters with applications to multiple target tracking, IEEE Trans. Signal Process., 47, 306, 10.1109/78.740104
Deming, 2009, Multi-target/multi-sensor tracking using only range and doppler measurements, IEEE Trans. Aerosp. Electron. Syst., 45, 593, 10.1109/TAES.2009.5089543
Li, 2010, Joint data association, registration, and fusion using EM-KF, IEEE Trans. Aerosp. Electron. Syst., 46, 496, 10.1109/TAES.2010.5461637
Huang, 2012, A pseudo-measurement approach to simultaneous registration and track fusion, IEEE Trans. Aerosp. Electron. Syst., 48, 2315, 10.1109/TAES.2012.6237594
Li, 2010, Simultaneous registration and fusion of radar and ESM by EM-EKS, 1130
Huang, 2005, An expectation-maximization-based interacting multiple model approach for cooperative driving systems, IEEE Trans. Intell. Transp. Syst., 6, 206, 10.1109/TITS.2005.848366
Nowak, 2003, Distributed EM algorithms for density estimation and clustering in sensor networks, IEEE Trans. Signal Process., 51, 2245, 10.1109/TSP.2003.814623
Gu, 2008, Distributed EM algorithm for Gaussian mixtures in sensor networks, IEEE Trans. Neural Netw., 19, 1154, 10.1109/TNN.2008.915110
Weng, 2011, Diffusion-based EM algorithm for distributed estimation of Gaussian mixtures in wireless sensor networks, Sensors, 11, 6297, 10.3390/s110606297
Morral, 2012, On-line gossip-based distributed expectation maximization algorithm, 305
Zhu, 2015, A joint data association, registration, and fusion approach for distributed tracking, Inf. Sci., 324, 186, 10.1016/j.ins.2015.06.042
He, 2014, Joint class identification and target classification using multiple HMMs, IEEE Trans. Aerosp. Electron. Syst., 50, 1269, 10.1109/TAES.2014.120672
Kantas, 2012, Distributed maximum likelihood for simultaneous self-localization and tracking in sensor networks, IEEE Trans. Signal Process., 60, 5038, 10.1109/TSP.2012.2205923
Xia, 2012, Bayesian track-before-detect algorithm with target amplitude fluctuation based on expectation-maximisation estimation, IET Radar Sonar Navigat., 6, 719, 10.1049/iet-rsn.2011.0297
Liu, 2007, Multitarget tracking in distributed sensor networks, IEEE Signal Process. Mag., 24, 36, 10.1109/MSP.2007.361600
Akyildiz, 2002, A survey on sensor networks, IEEE Commun. Mag., 40, 102, 10.1109/MCOM.2002.1024422
Dimakis, 2010, Gossip algorithms for distributed signal processing, Proc. IEEE, 98, 1847, 10.1109/JPROC.2010.2052531
Pereira, 2013, A diffusion-based EM algorithm for distributed estimation in unreliable sensor networks, IEEE Signal Process. Lett., 20, 595, 10.1109/LSP.2013.2260329
Feng, 2015, Cooperative localization in WSNs using Gaussian mixture modeling: Distributed ECM algorithms, IEEE Trans. Signal Process., 63, 1448, 10.1109/TSP.2015.2394300
Hugh, 2006, Simultaneous localization and mapping: Part I, IEEE Robot. Autom. Mag., 13, 99, 10.1109/MRA.2006.1638022
Haykin, 2006, Cognitive radar: a way of the future, IEEE Signal Process. Mag., 23, 30, 10.1109/MSP.2006.1593335
Beal, 1998
Winn, 2003
Winn, 2005, Variational message passing, J. Mach. Learn. Res., 6, 661
Hoffman, 2013, Stochastic variational inference, J. Mach. Learn. Res., 14, 1303
Sung, 2008, Latent-space variational bayes, IEEE Trans. Pattern Anal. Mach. Intell., 30, 2236, 10.1109/TPAMI.2008.157
Fox, 2012, A tutorial on variational Bayesian inference, Artif. Intell. Rev., 38, 85, 10.1007/s10462-011-9236-8
Sun, 2013, A review of deterministic approximate inference techniques for Bayesian machine learning, Neural Comput. Appl., 23, 2039, 10.1007/s00521-013-1445-4
midl, 2008, Variational Bayesian filtering, IEEE Trans. Signal Process., 56, 5020, 10.1109/TSP.2008.928969
Särkkä, 2009, Recursive noise adaptive Kalman filtering by variational Bayesian approximations, IEEE Trans. Autom. Control, 54, 596, 10.1109/TAC.2008.2008348
Juha, 2015, Gaussian filtering and variational approximations for Bayesian smoothing in continuous-discrete stochastic dynamic systems, Signal Process., 111, 124, 10.1016/j.sigpro.2014.12.013
Mbalawata, 2015, Adaptive metropolis algorithm using variational Bayesian adaptive Kalman filter, Comput. Stat. Data Anal., 83, 101, 10.1016/j.csda.2014.10.006
Li, 2012, State estimation for jump Markov linear systems by variational Bayesian approximation, IET Control Theory Appl., 6, 319, 10.1049/iet-cta.2011.0167
Shen, 2015, An interacting multiple model approach for state estimation with non-Gaussian noise using a variational Bayesian method, Asian J. Control, 17, 1424, 10.1002/asjc.1055
Li, 2013, PHD filter for multi-target tracking by variational Bayesian approximation, 7815
Yang, 2013, An improved multi-target tracking algorithm based on CBMeMBer filter and variational Bayesian approximation, Signal Process., 93, 2510, 10.1016/j.sigpro.2013.03.027
Miguel, 2012, Overlapping mixtures of Gaussian processes for the data association problem, Pattern Recogn., 45, 1386, 10.1016/j.patcog.2011.10.004
Ryan, 2014, A complete variational tracker, 496
Tinne., 2011, Shape-based online multitarget tracking and detection for targets causing multiple measurements: variational Bayesian clustering and lossless data association, IEEE Trans. Pattern Anal. Mach. Intell., 33, 2477, 10.1109/TPAMI.2011.83
Williams, 2015, An efficient, variational approximation of the best fitting multi-Bernoulli filter, IEEE Trans. Signal Process., 63, 258, 10.1109/TSP.2014.2370946
Vercauteren, 2004, Joint multiple target tracking and classification in collaborative sensor networks, IEEE J. Select. Areas Commun., 23, 714, 10.1109/JSAC.2005.843540
Challa, 2001, Joint target tracking and classification using radar and ESM sensors, IEEE Trans. Aerosp. Electron. Syst., 37, 1039, 10.1109/7.953266
Vo, 2011, Bernoulli forward-backward smoothing for joint target detection and tracking, IEEE Trans. Signal Process., 59, 4473, 10.1109/TSP.2011.2158427
Vo, 2012, Multi-sensor joint detection and tracking with the Bernoulli filter, IEEE Trans. Aerosp. Electron. Syst., 48, 1385, 10.1109/TAES.2012.6178069
Liu, 2013
Yang, 2007