A survey on foot drop and functional electrical stimulation

Gareth York1, Samit Chakrabarty1
1School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Barbeau, H., et al.: Tapping into spinal circuits to restore motor function. Brain Res Rev 30(1), 27–51 (1999). https://doi.org/10.1016/S0165-0173(99)00008-9

Berry, H., Richardson, P.M.: Common peroneal nerve palsy: a clinical and electrophysiological review. J Neurol Neurosurg Psychiatry 39(12), 1162–1171 (1976). https://doi.org/10.1136/jnnp.39.12.1162

Brooks, D.M.: Nerve Compression by Simple Ganglia. J. Bone Joint Surg. 34B(3), 391–400 (1952). https://online.boneandjoint.org.uk/doi/pdf/10.1302/0301-620x.34b3.391 (Accessed 21 October 2018)

Bulley, C., et al.: User experiences, preferences and choices relating to functional electrical stimulation and ankle foot orthoses for foot-drop after stroke. Physiotherapy 97(3), 226–233 (2011). https://doi.org/10.1016/J.PHYSIO.2010.11.001

Cambridgeshire and Peterborough Clinical Commissioning Group: Functional electrical stimulation (FES) for the treatment of drop foot of neurological origin. (2013) https://doi.org/10.1002/14651858.cd006676.pub2

Ding, Y.M., Kastin, A.J., Pan, W.H.: Neural plasticity after spinal cord injury. Curr Pharm Des 11(11), 1441–1450 (2005). https://doi.org/10.2174/1381612053507855

Embrey, D.G., et al.: Functional electrical stimulation to dorsiflexors and plantar flexors during gait to improve walking in adults with chronic hemiplegia. Arch Phys Med Rehabil 91(5), 687–696 (2010). https://doi.org/10.1016/j.apmr.2009.12.024

Everaert, D.G., et al.: Effect of a foot-drop stimulator and ankle–foot orthosis on walking performance after stroke. Neurorehabilit Neural Repair 27(7), 579–591 (2013). https://doi.org/10.1177/1545968313481278

Ferrante, S., et al. (2016): A personalized multi-channel FES controller based on muscle synergies to support gait rehabilitation after stroke. Front. Neurosci. 10, 425 (2016). https://doi.org/10.3389/fnins.2016.00425 . https://www.frontiersin.org/articles/10.3389/fnins.2016.00425/full

Franco, G. et al.: FPGA-based muscle synergy extraction for surface EMG gesture classification. In: 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 1–4, (2017). https://doi.org/10.1109/biocas.2017.8325232

Kertmen, H., et al.: Acute bilateral isolated foot drop: Report of two cases. Asian J Neurosurg 10(2), 123–125 (2015). https://doi.org/10.4103/1793-5482.144596

Kesar, T.M., et al.: Combined effects of fast treadmill walking and functional electrical stimulation on post-stroke gait. Gait Posture 33(2), 309–313 (2011). https://doi.org/10.1016/j.gaitpost.2010.11.019

Kluding, P.M., et al.: Foot drop stimulation versus ankle foot orthosis after stroke. Stroke 44(6), 1660–1669 (2013). https://doi.org/10.1161/strokeaha.111.000334

Koller, R.L., Blank, N.K.: Strawberry pickers’ palsy. Arch. Neurol. 37(5), 320 (1980). http://www.ncbi.nlm.nih.gov/pubmed/6248000 (Accessed: 21 October 2018)

Kottink, A.I., et al.: A Randomized controlled trial of an implantable 2-channel peroneal nerve stimulator on walking speed and activity in poststroke hemiplegia. Arch Phys Med Rehabilit (2007). https://doi.org/10.1016/j.apmr.2007.05.002

Melo, P.L., et al.: Technical developments of functional electrical stimulation to correct drop foot: sensing, actuation and control strategies. Clin Biomech 30(2), 101–113 (2015). https://doi.org/10.1016/j.clinbiomech.2014.11.007

Nakano, K.K.: Entrapment neuropathy from Baker’s cyst. JAMA 239(2), 135 (1978). http://www.ncbi.nlm.nih.gov/pubmed/579376 (Accessed: 21 October 2018)

NICE (2009) Functional electrical stimulation for drop foot of unctional electrical stimulation for drop foot of central neurological origin. https://www.nice.org.uk/terms-and . (Accessed: 21 October 2018)

NICE (2016) ODFS Pace and Pace XL functional electrical stimulation devices for treating drop foot. https://www.nice.org.uk/advice/mib56/resources/odfs-pace-and-pace-xl-functional-electrical-stimulation-devices-for-treating-drop-foot-pdf-63499229886661 . (Accessed: 21 October 2018)

Nobel, W.: Peroneal palsy due to hematoma in the common peroneal nerve sheath after distal torsional fractures and inversion ankle sprains. J Bone Joint Surg, Am Vol 48(8), 1484–1495 (1966). http://www.ncbi.nlm.nih.gov/pubmed/4289139 . (Accessed: 21 October 2018)

Potenza, A., et al.: Foot drop in cerebral stroke: a comparison between the use of functional electrical stimulation and conventional physiotherapy. Gait Posture 35, S46 (2012). https://doi.org/10.1016/J.GAITPOST.2011.09.083

Rasool, G., et al.: Real-time task discrimination for myoelectric control employing task-specific muscle synergies. IEEE Trans Neural Syst Rehabilit Eng 24(1), 98–108 (2016). https://doi.org/10.1109/TNSRE.2015.2410176

Ridding, M.C., et al.: Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects. Exp Brain Res 131(1), 135–143 (2000). http://www.ncbi.nlm.nih.gov/pubmed/10759179 . (Accessed: 21 October 2018)

Schrauwen, B., et al.: Compact hardware liquid state machines on FPGA for real-time speech recognition. Neural Netw 21(2–3), 511–523 (2008). https://doi.org/10.1016/j.neunet.2007.12.009

Sofla, M.A.: Identification, simulation and control of an anklefoot orthosis. vol. 435. Theses and Dissertations (2012). https://etd.ohiolink.edu/pg_10?::NO:10:P10_ETD_SUBID:2372

Spanias, J.A., et al.: Online adaptive neural control of a robotic lower limb prosthesis. J Neural Eng 15(1), 016015 (2018). https://doi.org/10.1088/1741-2552/aa92a8

Stein, R., et al.: Surface electrical stimulation for foot drop: control aspects and walking performance. J Autom Control 18(2), 47–52 (2008). https://doi.org/10.2298/JAC0802047S

Stevens, F., Weerkamp, N.J., Cals, J.W.L.: Foot drop. BMJ (2015). https://doi.org/10.1136/bmj.h1736

Stewart, J.D.: Foot drop: where, why and what to do? Pract Neurol 8(3), 158–169 (2008). https://doi.org/10.1136/jnnp.2008.149393

Suh, J.S., et al.: Peripheral (extracranial) nerve tumors: correlation of MR imaging and histologic findings. Radiology 183(2), 341–346 (1992). https://doi.org/10.1148/radiology.183.2.1561333

Taylor, P., et al.: Economic Justification for the Odstock Dropped Foot Stimulator (ODFS). http://www.odstockmedical.com/sites/default/files/cost_benefit_paper_4.pdf (2007). (Accessed: 21 October 2018)

Wen, Y., et al.: A new powered lower limb prosthesis control framework based on adaptive dynamic programming. IEEE Trans Neural Netw Learn Syst 28(9), 2215–2220 (2017). https://doi.org/10.1109/TNNLS.2016.2584559

Woltman, H.W.: Crossing the legs as a factor in the production of peroneal palsy. J Am Med Assoc 93(9), 670 (1929). https://doi.org/10.1001/jama.1929.02710090010004