A survey on foot drop and functional electrical stimulation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Barbeau, H., et al.: Tapping into spinal circuits to restore motor function. Brain Res Rev 30(1), 27–51 (1999). https://doi.org/10.1016/S0165-0173(99)00008-9
Berry, H., Richardson, P.M.: Common peroneal nerve palsy: a clinical and electrophysiological review. J Neurol Neurosurg Psychiatry 39(12), 1162–1171 (1976). https://doi.org/10.1136/jnnp.39.12.1162
Brooks, D.M.: Nerve Compression by Simple Ganglia. J. Bone Joint Surg. 34B(3), 391–400 (1952). https://online.boneandjoint.org.uk/doi/pdf/10.1302/0301-620x.34b3.391 (Accessed 21 October 2018)
Bulley, C., et al.: User experiences, preferences and choices relating to functional electrical stimulation and ankle foot orthoses for foot-drop after stroke. Physiotherapy 97(3), 226–233 (2011). https://doi.org/10.1016/J.PHYSIO.2010.11.001
Cambridgeshire and Peterborough Clinical Commissioning Group: Functional electrical stimulation (FES) for the treatment of drop foot of neurological origin. (2013) https://doi.org/10.1002/14651858.cd006676.pub2
Ding, Y.M., Kastin, A.J., Pan, W.H.: Neural plasticity after spinal cord injury. Curr Pharm Des 11(11), 1441–1450 (2005). https://doi.org/10.2174/1381612053507855
Embrey, D.G., et al.: Functional electrical stimulation to dorsiflexors and plantar flexors during gait to improve walking in adults with chronic hemiplegia. Arch Phys Med Rehabil 91(5), 687–696 (2010). https://doi.org/10.1016/j.apmr.2009.12.024
Everaert, D.G., et al.: Effect of a foot-drop stimulator and ankle–foot orthosis on walking performance after stroke. Neurorehabilit Neural Repair 27(7), 579–591 (2013). https://doi.org/10.1177/1545968313481278
Ferrante, S., et al. (2016): A personalized multi-channel FES controller based on muscle synergies to support gait rehabilitation after stroke. Front. Neurosci. 10, 425 (2016). https://doi.org/10.3389/fnins.2016.00425 . https://www.frontiersin.org/articles/10.3389/fnins.2016.00425/full
Franco, G. et al.: FPGA-based muscle synergy extraction for surface EMG gesture classification. In: 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 1–4, (2017). https://doi.org/10.1109/biocas.2017.8325232
Kertmen, H., et al.: Acute bilateral isolated foot drop: Report of two cases. Asian J Neurosurg 10(2), 123–125 (2015). https://doi.org/10.4103/1793-5482.144596
Kesar, T.M., et al.: Combined effects of fast treadmill walking and functional electrical stimulation on post-stroke gait. Gait Posture 33(2), 309–313 (2011). https://doi.org/10.1016/j.gaitpost.2010.11.019
Kluding, P.M., et al.: Foot drop stimulation versus ankle foot orthosis after stroke. Stroke 44(6), 1660–1669 (2013). https://doi.org/10.1161/strokeaha.111.000334
Koller, R.L., Blank, N.K.: Strawberry pickers’ palsy. Arch. Neurol. 37(5), 320 (1980). http://www.ncbi.nlm.nih.gov/pubmed/6248000 (Accessed: 21 October 2018)
Kottink, A.I., et al.: A Randomized controlled trial of an implantable 2-channel peroneal nerve stimulator on walking speed and activity in poststroke hemiplegia. Arch Phys Med Rehabilit (2007). https://doi.org/10.1016/j.apmr.2007.05.002
Melo, P.L., et al.: Technical developments of functional electrical stimulation to correct drop foot: sensing, actuation and control strategies. Clin Biomech 30(2), 101–113 (2015). https://doi.org/10.1016/j.clinbiomech.2014.11.007
Nakano, K.K.: Entrapment neuropathy from Baker’s cyst. JAMA 239(2), 135 (1978). http://www.ncbi.nlm.nih.gov/pubmed/579376 (Accessed: 21 October 2018)
NICE (2009) Functional electrical stimulation for drop foot of unctional electrical stimulation for drop foot of central neurological origin. https://www.nice.org.uk/terms-and . (Accessed: 21 October 2018)
NICE (2016) ODFS Pace and Pace XL functional electrical stimulation devices for treating drop foot. https://www.nice.org.uk/advice/mib56/resources/odfs-pace-and-pace-xl-functional-electrical-stimulation-devices-for-treating-drop-foot-pdf-63499229886661 . (Accessed: 21 October 2018)
Nobel, W.: Peroneal palsy due to hematoma in the common peroneal nerve sheath after distal torsional fractures and inversion ankle sprains. J Bone Joint Surg, Am Vol 48(8), 1484–1495 (1966). http://www.ncbi.nlm.nih.gov/pubmed/4289139 . (Accessed: 21 October 2018)
Potenza, A., et al.: Foot drop in cerebral stroke: a comparison between the use of functional electrical stimulation and conventional physiotherapy. Gait Posture 35, S46 (2012). https://doi.org/10.1016/J.GAITPOST.2011.09.083
Rasool, G., et al.: Real-time task discrimination for myoelectric control employing task-specific muscle synergies. IEEE Trans Neural Syst Rehabilit Eng 24(1), 98–108 (2016). https://doi.org/10.1109/TNSRE.2015.2410176
Ridding, M.C., et al.: Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects. Exp Brain Res 131(1), 135–143 (2000). http://www.ncbi.nlm.nih.gov/pubmed/10759179 . (Accessed: 21 October 2018)
Schrauwen, B., et al.: Compact hardware liquid state machines on FPGA for real-time speech recognition. Neural Netw 21(2–3), 511–523 (2008). https://doi.org/10.1016/j.neunet.2007.12.009
Sofla, M.A.: Identification, simulation and control of an anklefoot orthosis. vol. 435. Theses and Dissertations (2012). https://etd.ohiolink.edu/pg_10?::NO:10:P10_ETD_SUBID:2372
Spanias, J.A., et al.: Online adaptive neural control of a robotic lower limb prosthesis. J Neural Eng 15(1), 016015 (2018). https://doi.org/10.1088/1741-2552/aa92a8
Stein, R., et al.: Surface electrical stimulation for foot drop: control aspects and walking performance. J Autom Control 18(2), 47–52 (2008). https://doi.org/10.2298/JAC0802047S
Stewart, J.D.: Foot drop: where, why and what to do? Pract Neurol 8(3), 158–169 (2008). https://doi.org/10.1136/jnnp.2008.149393
Suh, J.S., et al.: Peripheral (extracranial) nerve tumors: correlation of MR imaging and histologic findings. Radiology 183(2), 341–346 (1992). https://doi.org/10.1148/radiology.183.2.1561333
Taylor, P., et al.: Economic Justification for the Odstock Dropped Foot Stimulator (ODFS). http://www.odstockmedical.com/sites/default/files/cost_benefit_paper_4.pdf (2007). (Accessed: 21 October 2018)
Wen, Y., et al.: A new powered lower limb prosthesis control framework based on adaptive dynamic programming. IEEE Trans Neural Netw Learn Syst 28(9), 2215–2220 (2017). https://doi.org/10.1109/TNNLS.2016.2584559