A survey on facial image deblurring
Tóm tắt
When a facial image is blurred, it significantly affects high-level vision tasks such as face recognition. The purpose of facial image deblurring is to recover a clear image from a blurry input image, which can improve the recognition accuracy, etc. However, general deblurring methods do not perform well on facial images. Therefore, some face deblurring methods have been proposed to improve performance by adding semantic or structural information as specific priors according to the characteristics of the facial images. In this paper, we survey and summarize recently published methods for facial image deblurring, most of which are based on deep learning. First, we provide a brief introduction to the modeling of image blurring. Next, we summarize face deblurring methods into two categories: model-based methods and deep learning-based methods. Furthermore, we summarize the datasets, loss functions, and performance evaluation metrics commonly used in the neural network training process. We show the performance of classical methods on these datasets and metrics and provide a brief discussion on the differences between model-based and learning-based methods. Finally, we discuss the current challenges and possible future research directions.
Tài liệu tham khảo
Lu, Y. Z. Out-of-focus blur: Image de-blurring. arXiv preprint arXiv:1710.00620, 2017.
Chakrabarti, A. A neural approach to blind motion deblurring. In: Computer Vision–ECCV 2016. Lecture Notes in Computer Science, Vol. 9907. Leibe, B.; Matas, J.; Sebe, N.; Welling, M. Eds. Springer Cham, 221–235, 2016.
Boracchi, G.; Foi, A. Modeling the performance of image restoration from motion blur. IEEE Transactions on Image Processing Vol. 21, No. 8, 3502–3517, 2012.
Song, Y. B.; Zhang, J. W.; Gong, L. J.; He, S. F.; Bao, L. C.; Pan, J. S.; Yang, Q. X.; Yang, M. H. Joint face hallucination and deblurring via structure generation and detail enhancement. International Journal of Computer Vision Vol. 127, Nos. 6–7, 785–800, 2019.
Wang, X. T.; Li, Y.; Zhang, H. L.; Shan, Y. Towards real-world blind face restoration with generative facial prior. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 9164–9174, 2021.
Li, C. M. A survey on image deblurring. arXiv preprint arXiv:2202.07456, 2022.
Zhang, K. H.; Ren, W. Q.; Luo, W. H.; Lai, W. S.; Stenger, B.; Yang, M. H.; Li, H. D. Deep image deblurring: A survey. International Journal of Computer Vision Vol. 130, No. 9, 2103–2130, 2022.
Nishiyama, M.; Hadid, A.; Takeshima, H.; Shotton, J.; Kozakaya, T.; Yamaguchi, O. Facial deblur inference using subspace analysis for recognition of blurred faces. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 33, No. 4, 838–845, 2011.
Zhang, H. C.; Yang, J. C.; Zhang, Y. N.; Nasrabadi, N. M.; Huang, T. S. Close the loop: Joint blind image restoration and recognition with sparse representation prior. In: Proceedings of the International Conference on Computer Vision, 770–777, 2011.
Tian, L.; Fan, C. X.; Ming, Y.; Hong, X. P. Weighted non-locally self-similarity sparse representation for face deblurring. In: Computer Vision–ACCV 2016 Workshops. Lecture Notes in Computer Science, Vol. 10116. Chen, C. S.; Lu, J.; Ma, K. K. Eds. Springer Cham, 576–589, 2017.
Jiang, J. L.; Zhang, L.; Yang, J. Mixed noise removal by weighted encoding with sparse nonlocal regularization. IEEE Transactions on Image Processing Vol. 23, No. 6, 2651–2662, 2014.
Anwar, S.; Huynh, C. P.; Porikli, F. Image deblurring with a class-specific prior. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 41, No. 9, 2112–2130, 2019.
Zhang, M. N.; Fang, Y. Y.; Ni, G. X.; Zeng, T. Y. Pixel screening based intermediate correction for blind deblurring. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 1–9, 2022.
Tian, D. Y.; Tao, D. C. Coupled learning for facial deblur. IEEE Transactions on Image Processing Vol. 25, No. 2, 961–972, 2016.
Mittal, A.; Moorthy, A. K.; Bovik, A. C. Making image quality assessment robust. In: Proceedings of the 46th Asilomar Conference on Signals, Systems and Computers, 1718–1722, 2012.
Pan, J. S.; Hu, Z.; Su, Z. X.; Yang, M. H. Deblurring face images with exemplars. In: Computer Vision–ECCV 2014. Lecture Notes in Computer Science, Vol. 8695. Fleet, D.; Pajdla, T.; Schiele, B.; Tuytelaars, T. Eds. Springer Cham, 47–62, 2014.
Hacohen, Y.; Shechtman, E.; Lischinski, D. Deblurring by example using dense correspondence. In: Proceedings of the IEEE International Conference on Computer Vision, 2384–2391, 2013.
Szegedy, C.; Liu, W.; Jia, Y. Q.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1–9, 2015.
Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015. Lecture Notes in Computer Science, Vol. 9351. Navab, N.; Hornegger, J.; Wells, W.; Frangi, A. Eds. Springer Cham, 234–241, 2015.
Nah, S.; Kim, T. H.; Lee, K. M. Deep multi-scale convolutional neural network for dynamic scene deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 257–265, 2017.
Goodfellow, I. J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems, Vol. 2, 2672–2680, 2014.
Schuler, C. J.; Hirsch, M.; Harmeling, S.; Schölkopf, B. Learning to deblur. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 38, No. 7, 1439–1451, 2015.
Jin, M. G.; Hirsch, M.; Favaro, P. Learning face deblurring fast and wide. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 858–866, 2018.
He, K. M.; Zhang, X. Y.; Ren, S. Q.; Sun, J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778, 2016.
Lin, S. N.; Zhang, J. W.; Pan, J. S.; Liu, Y. C.; Wang, Y. T.; Chen, J.; Ren, J. Learning to deblur face images via sketch synthesis. Proceedings of the AAAI Conference on Artificial Intelligence Vol. 34, No. 7, 11523–11530, 2020.
Xu, L.; Ren, J. S. J.; Liu, C.; Jia, J. Y. Deep convolutional neural network for image deconvolution. In: Proceedings of the 27th International Conference on Neural Information Processing Systems, Vol. 1, 1790–1798, 2014.
Chrysos, G. G.; Favaro, P.; Zafeiriou, S. Motion deblurring of faces. International Journal of Computer Vision Vol. 127, Nos. 6–7, 801–823, 2019.
Chrysos, G. G.; Zafeiriou, S. Deep face deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2015–2024, 2017.
Wang, L. X.; Li, Y. L.; Wang, S. J. DeepDeblur: Fast one-step blurry face images restoration. arXiv preprint arXiv:1711.09515, 2017.
Qi, Q.; Guo, J. C.; Li, C. Y.; Xiao, L. J. Blind face images deblurring with enhancement. Multimedia Tools and Applications Vol. 80, No. 2, 2975–2995, 2021.
Shen, Z. Y.; Lai, W. S.; Xu, T. F.; Kautz, J.; Yang, M. H. Deep semantic face deblurring. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8260–8269, 2018.
Yasarla, R.; Perazzi, F.; Patel, V. M. Deblurring face images using uncertainty guided multi-stream semantic networks. IEEE Transactions on Image Processing Vol. 29, 6251–6263, 2020.
Shen, Z. Y.; Lai, W. S.; Xu, T. F.; Kautz, J.; Yang, M. H. Exploiting semantics for face image deblurring. International Journal of Computer Vision Vol. 128, No. 7, 1829–1846, 2020.
Lee, T. B.; Jung, S. H.; Heo, Y. S. Progressive semantic face deblurring. IEEE Access Vol. 8, 223548–223561, 2020.
Ren, W. Q.; Yang, J. L.; Deng, S. Y.; Wipf, D.; Cao, X. C.; Tong, X. Face video deblurring using 3D facial priors. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 9387–9396, 2019.
Zhu, F. D.; Zhu, J. W.; Chu, W. Q.; Zhang, X. Y.; Ji, X. Z.; Wang, C. J.; Tai, Y. Blind face restoration via integrating face shape and generative priors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 7652–7661, 2022.
Jung, S. H.; Lee, T. B.; Heo, Y. S. Deep feature prior guided face deblurring. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 884–893, 2022.
Zhang, X.; Zhang, H.; Lv, J. C.; Li, X. J. Face deblurring based on separable normalization and adaptive denormalization. arXiv preprint arXiv:2112.09833, 2021.
Lin, T. Y.; Goyal, P.; Girshick, R.; He, K. M.; Dollár, P. Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, 2999–3007, 2017.
Hu, X. B.; Ren, W. Q.; Yang, J. L.; Cao, X. C.; Wipf, D.; Menze, B.; Tong, X.; Zha, H. B. Face restoration via plug-and-play 3D facial priors. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 44, No. 12, 8910–8926, 2022.
Paysan, P.; Knothe, R.; Amberg, B.; Romdhani, S.; Vetter, T. A 3D face model for pose and illumination invariant face recognition. In: Proceedings of the 6th IEEE International Conference on Advanced Video and Signal Based Surveillance, 296–301, 2009.
Xu, X. Y.; Sun, D. Q.; Pan, J. S.; Zhang, Y. J.; Pfister, H.; Yang, M. H. Learning to super-resolve blurry face and text images. In: Proceedings of the IEEE International Conference on Computer Vision, 251–260, 2017.
Karras, T.; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.; Aila, T. M. Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8107–8116, 2020.
Madam, N. T.; Kumar, S.; Rajagopalan, A. N. Unsupervised class-specific deblurring. In: Computer Vision - ECCV 2018. Lecture Notes in Computer Science, Vol. 11214. Ferrari, V.; Hebert, M.; Sminchisescu, C.; Weiss, Y. Eds. Springer Cham, 358–374, 2018.
Lu, B. Y.; Chen, J. C.; Chellappa, R. Unsupervised domain-specific deblurring via disentangled representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 10217–10226, 2019.
Zhu, J. Y.; Park, T.; Isola, P.; Efros, A. A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, 2242–2251, 2017.
Xia, Z. H.; Chakrabarti, A. Training image estimators without image ground-truth. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, Article No. 219, 2439–2449, 2019.
Huber, P. J. Robust regression: Asymptotics, conjectures and Monte Carlo. The Annals of Statistics Vol. 1, No. 5, 799–821, 1973.
Lai, W. S.; Huang, J. B.; Hu, Z.; Ahuja, N.; Yang, M. H. A comparative study for single image blind deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1701–1709, 2016.
Le, V.; Brandt, J.; Lin, Z.; Bourdev, L.; Huang, T. S. Interactive facial feature localization. In: Computer Vision–ECCV 2012. Lecture Notes in Computer Science, Vol. 7574. Fitzgibbon, A.; Lazebnik, S.; Perona, P.; Sato, Y.; Schmid, C. Eds. Springer Berlin Heidelberg, 679–692, 2012.
Sim, T.; Baker, S.; Bsat, M. The CMU pose, illumination, and expression database. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 25, No. 12, 1615–1618, 2003.
Liu, Z. W.; Luo, P.; Wang, X. G.; Tang, X. O. Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, 3730–3738, 2015.
Lee, C. H.; Liu, Z. W.; Wu, L. Y.; Luo, P. MaskGAN: Towards diverse and interactive facial image manipulation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 5548–5557, 2020.
Karras, T.; Laine, S.; Aila, T. M. A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4396–4405, 2019.
Ng, H. W.; Winkler, S. A data-driven approach to cleaning large face datasets. In: Proceedings of the IEEE International Conference on Image Processing, 343–347, 2014.
Kumar, N.; Berg, A. C.; Belhumeur, P. N.; Nayar, S. K. Attribute and simile classifiers for face verification. In: Proceedings of the IEEE 12th International Conference on Computer Vision, 365–372, 2009.
Gross, R.; Matthews, I.; Cohn, J.; Kanade, T.; Baker, S. Multi-PIE. Image and Vision Computing Vol. 28, No. 5, 807–813, 2010.
Deng, J. K.; Guo, J.; Xue, N. N.; Zafeiriou, S. ArcFace: Additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4685–4694, 2019.
Wang, Z.; Bovik, A. C.; Sheikh, H. R.; Simoncelli, E. P. Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing Vol. 13, No. 4, 600–612, 2004.
Zhang, R.; Isola, P.; Efros, A. A.; Shechtman, E.; Wang, O. The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 586–595, 2018.
Mittal, A.; Soundararajan, R.; Bovik, A. C. Making a “completely blind” image quality analyzer. IEEE Signal Processing Letters Vol. 20, No. 3, 209–212, 2013.
Ignatov, A.; Timofte, R.; Van Vu, T.; Luu, T. M.; Pham, T. X.; Van Nguyen, C.; Kim, Y.; Choi, J. S.; Kim, M.; Huang, J.; et al. PIRM challenge on perceptual image enhancement on smartphones: Report. In: Computer Vision–ECCV 2018 Workshops. Lecture Notes in Computer Science, Vol. 11133. Leal-Taixé, L.; Roth, S. Eds. Springer Cham, 315–333, 2019.
Mittal, A.; Moorthy, A. K.; Bovik, A. C. No-reference image quality assessment in the spatial domain. IEEE Transactions on Image Processing Vol. 21, No. 12, 4695–4708, 2012.
Ma, C.; Yang, C. Y.; Yang, X. K.; Yang, M. H. Learning a no-reference quality metric for single-image super-resolution. Computer Vision and Image Understanding Vol. 158, 1–16, 2017.
Venkatanath, N.; Praneeth, D.; Bh, M. C.; Channappayya, S. S.; Medasani, S. S. Blind image quality evaluation using perception based features. In: Proceedings of the 21st National Conference on Communications, 1–6, 2015.
Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, 6629–6640, 2017.
Parkhi, O. M.; Vedaldi, A.; Zisserman, A. Deep face recognition. In: Proceedings of the British Machine Vision Conference, 2015.
Amos, B.; Ludwiczuk, B.; Satyanarayanan, M. OpenFace: A general-purpose face recognition library with mobile applications. School of Computer Science, Carnegie Mellon University, 2016.
Howard, A. G.; Zhu, M. L.; Chen, B.; Kalenichenko, D.; Wang, W. J.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.
Huang, G. B.; Mattar, M. A.; Berg, T. L.; Learned-Miller, E. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. In: Proceedings of the Workshop on Faces in “Real-Life” Images: Detection, Alignment, and Recognition, 2008.
Shan, Q.; Jia, J. Y.; Agarwala, A. High-quality motion deblurring from a single image. ACM Transactions on Graphics Vol. 27, No. 3, 1–10, 2008.
Krishnan, D.; Tay, T.; Fergus, R. Blind deconvolution using a normalized sparsity measure. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 233–240, 2011.
Cho, S.; Lee, S. Fast motion deblurring. ACM Transactions on Graphics Vol. 28, No. 5, 1–8, 2009.
Xu, L.; Jia, J. Y. Two-phase kernel estimation for robust motion deblurring. In: Computer Vision–ECCV 2010. Lecture Notes in Computer Science, Vol. 6311. Daniilidis, K.; Maragos, P.; Paragios, N. Eds. Springer Berlin Heidelberg, 157–170, 2010.
Zhang, J. W.; Pan, J. S.; Ren, J.; Song, Y. B.; Bao, L. C.; Lau, R. W. H.; Yang, M. H. Dynamic scene deblurring using spatially variant recurrent neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2521–2529, 2018.
Gao, H. Y.; Tao, X.; Shen, X. Y.; Jia, J. Y. Dynamic scene deblurring with parameter selective sharing and nested skip connections. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3843–3851, 2019.
Yuan, Y.; Su, W.; Ma, D. D. Efficient dynamic scene deblurring using spatially variant deconvolution network with optical flow guided training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3552–3561, 2020.
Zamir, S. W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F. S.; Yang, M. H. Restormer: efficient transformer for high-resolution image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 5718–5729, 2022.
Chen, H. T.; Wang, Y. H.; Guo, T. Y.; Xu, C.; Deng, Y. P.; Liu, Z. H.; Ma, S. W.; Xu, C. J.; Xu, C.; Gao, W. Pre-trained image processing transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 12294–12305, 2021.
Lai, W. S.; Shih, Y.; Chu, L. C.; Wu, X. T.; Tsai, S. F.; Krainin, M.; Sun, D. Q.; Liang, C. K. Face deblurring using dual camera fusion on mobile phones. ACM Transactions on Graphics Vol. 41, No. 4, Article No. 148, 2022.