A survey of the European Open Science Cloud services for expanding the capacity and capabilities of multidisciplinary scientific applications

Computer Science Review - Tập 49 - Trang 100571 - 2023
Amanda Calatrava1, Hernán Asorey2,3, Jan Astalos4, Alberto Azevedo5, Francesco Benincasa6, Ignacio Blanquer1, Martin Bobak4, Francisco Brasileiro7, Laia Codó6, Laura del Cano8, Borja Esteban9, Meritxell Ferret6, Josef Handl10, Tobias Kerzenmacher11, Valentin Kozlov9, Aleš Křenek10, Ricardo Martins5, Manuel Pavesio12, Antonio Juan Rubio-Montero13, Juan Sánchez-Ferrero12
1Instituto de Instrumentación para Imagen Molecular (I3M), Universitat Politècnica de València, Valencia, 46022, Spain
2Medical Physics Department, Comisión Nacional de Energía Atómica (CNEA), Centro Atómico Bariloche, San Carlos de Bariloche, 8400, Río Negro, Argentina
3Instituto de Tecnología en Detección y Astropartículas (ITeDA, CNEA/CONICET/UNSAM), Centro Atómico Constituyentes, Villa Maipú, 1450, Buenos Aires, Argentina
4Institute of Informatics, Slovak Academy of Sciences, Bratislava, Slovakia
5Laboratório Nacional de Engenharia Civil (LNEC), Lisbon, Portugal
6Barcelona Supercomputing Center (BSC), Barcelona, Spain
7Federal University of Campina Grande (UFCG), Campina Grande, Brazil
8Centro Nacional de Biotecnologia, CSIC, Madrid, Spain
9Steinbuch Centre for Computing (SCC), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
10MU, Brno, Czech Republic
11Institute for Meteorology and Climate Research–Atmospheric Trace Gases and Remote Sensing (IMK-ASF), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
12Control, Observation and tracking systems, Space Management Area (Indra Sistemas SA), Ctra. de Loeches, 9, Torrejón de Ardoz, 28850, Madrid, Spain
13Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Av. Complutense 40, Madrid, 28040, Madrid, Spain

Tài liệu tham khảo

2021 Foster, 2016 Commission, 2016 I. Blanquer, G. Brasche, D. Lezzi, Requirements of scientific applications in cloud offerings, in: Proceedings of the 2012 Sixth Iberian Grid Infrastructure Conference, IBERGRID, Vol. 12, 2012, pp. 173–182. FAIR Data Maturity Model. Specification and Guidelines, The FAIR Data Maturity Model Working Group, 2020, http://dx.doi.org/10.15497/rda00050. Commission, 2020 EOSC-Synergy, 2020 Enhance, 2021 WORSICA, 2021 WORSICA, 2021 Cunha, 2020, A high-throughput shared service to estimate evapotranspiration using landsat imagery, Comput. Geosci., 134, 10.1016/j.cageo.2019.104341 M. Rodriguez, https://u.i3~m.upv.es/b7g7m. 2018. GCore, 2022 de la Rosa-Trevín, 2016, Scipion: A software framework toward integration, reproducibility and validation in 3D electron microscopy, J. Struct. Biol., 195, 93, 10.1016/j.jsb.2016.04.010 2017 ELIXIR, 2021 Sidelnik, 2017, LAGO: The latin American giant observatory, Nucl. Instrum. Methods Phys. Res. A, 876, 173, 10.1016/j.nima.2017.02.069 2021 Rubio-Montero, 2021, A novel cloud-based framework for standardized simulations in the latin American giant observatory (LAGO), 1 Basart, 2019, The WMO sds-WAS regional center for northern africa, middle east and europe, vol. 99, 04008 Basart, 2015, The Barcelona dust forecast center: The first WMO regional meteorological center specialized on atmospheric sand and dust forecast, 13309 UMSA, 2022 MSWSS, 2021 O3AS, 2022 King, 2007, An introduction to the dataverse network as an infrastructure for data sharing, Sociol. Methods Res., 36, 173, 10.1177/0049124107306660 Viljoen, 2016, Towards European open science commons: The EGI open data platform and the EGI DataHub, vol. 97, 148 Lecarpentier, 2013, EUDAT: a new cross-disciplinary data infrastructure for science, Int. J. Digit. Curation, 8, 279, 10.2218/ijdc.v8i1.260 Yoo, 2003, SLURM: Simple linux utility for resource management, vol. 2862, 44 Goecks, 2010, Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences, Genome Biol., 11, R86, 10.1186/gb-2010-11-8-r86 EGI, 2021 EGI, 2021 EGI, 2021 EGI, 2021 EUDAT, 2021 Caballer, 2015, Dynamic management of virtual infrastructures, J. Grid Comput., 13, 53, 10.1007/s10723-014-9296-5 EGI, 2021 Tran, 2021 EUDAT, 2021 Calatrava, 2016, Self-managed cost-efficient virtual elastic clusters on hybrid cloud infrastructures, Future Gener. Comput. Syst., 61, 13, 10.1016/j.future.2016.01.018 EGI, 2021 EUDAT, 2021 GEANT, 2021 Linden, 2018, Common ELIXIR service for researcher authentication and authorisation Binz, 2014, 527 EGI, 2022 INSTRUCT-ERIC, 2021 Pablo Orviz, 2022 Asorey, 2018, Preliminary results from the latin American giant observatory space weather simulation chain, Space Weather, 16, 461, 10.1002/2017SW001774 Rubio-Montero, 2021, The EOSC-synergy cloud services implementation for the latin American giant observatory (LAGO), vol. 395, 261 Caballer, 2015, Dynamic management of virtual infrastructures, J. Grid Comput., 13, 53, 10.1007/s10723-014-9296-5 Gomes, 2020, An overview of platforms for big earth observation data management and analysis, Remote Sens., 12, 10.3390/rs12081253 Australia, 2022 Bishop-Taylor, 2019, Sub-pixel waterline extraction: Characterising accuracy and sensitivity to indices and spectra, Remote Sens., 11, 10.3390/rs11242984 Bishop-Taylor, 2021, Mapping Australia’s dynamic coastline at mean sea level using three decades of landsat imagery, Remote Sens. Environ., 267, 10.1016/j.rse.2021.112734 Copernicus, 2022 Mu, 2011, Improvements to a MODIS global terrestrial evapotranspiration algorithm, Remote Sens. Environ., 115, 1781, 10.1016/j.rse.2011.02.019 Wan, 2015, Water balance-based actual evapotranspiration reconstruction from ground and satellite observations over the conterminous United States, Water Resour. Res., 51, 6485, 10.1002/2015WR017311 Goodman, 2019, GeoQuery: Integrating HPC systems and public web-based geospatial data tools, Comput. Geosci., 122, 103, 10.1016/j.cageo.2018.10.009 Abouali, 2013, A high performance GPU implementation of surface energy balance system (SEBS) based on CUDA-C, Environ. Model. Softw., 41, 134, 10.1016/j.envsoft.2012.12.005 Olmedo, 2017 Team, 2022 Padarian, 2015, Using google’s cloud-based platform for digital soil mapping, Comput. Geosci., 83, 80, 10.1016/j.cageo.2015.06.023 Amani, 2020, Google earth engine cloud computing platform for remote sensing big data applications: A comprehensive review, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 13, 5326, 10.1109/JSTARS.2020.3021052 Bhatkar, 2021 Cianfrocco, 2018, Cryoem-cloud-tools: A software platform to deploy and manage cryo-EM jobs in the cloud, J. Struct. Biol., 203, 230, 10.1016/j.jsb.2018.05.014 Cianfrocco, 2017, COSMIC2: A science gateway for cryo-electron microscopy structure determination, 1 Ferreira, 2020 DataCite, 2023 Raúl PalmaEmail, 2014 EUDAT, 2021 Bernyk, 2016, The theoretical astrophysical observatory: Cloud-based mock galaxy catalogs, Astrophys. J. Suppl. Ser., 223, 9, 10.3847/0067-0049/223/1/9 Asorey, 2016, The latin American giant observatory: A successful collaboration in latin america based on cosmic rays and computer science domains, 707 Rodríguez-Pascual, 2015, A resilient methodology for accessing and exploiting data and scientific codes on distributed environments, 319 World Meteorological Organization (WMO), Scientific Assessment of Ozone Depletion: 2022, GAW Report No. 278, 2022, p. 509 pp,. Dhomse, 2018, Estimates of ozone return dates from chemistry-climate model initiative simulations, Atmos. Chem. Phys., 18, 8409, 10.5194/acp-18-8409-2018 Keeble, 2021, Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100, Atmos. Chem. Phys., 21, 5015, 10.5194/acp-21-5015-2021 Pérez-Padillo, 2021, Open-source application for water supply system management: Implementation in a water transmission system in southern Spain, Water, 13, 3652, 10.3390/w13243652 Bayer, 2021, Design and development of a web-based EPANET model catalogue and execution environment, Ann. GIS, 27, 247, 10.1080/19475683.2021.1936171 Kruszyński, 2020, Computer modeling of water supply and sewerage networks as a tool in an integrated water and wastewater management system in municipal enterprises, J. Ecol. Eng., 21, 261, 10.12911/22998993/117533 Yang, 2020, An implementation of cloud-based platform with R packages for spatiotemporal analysis of air pollution, J. Supercomput., 76, 1416, 10.1007/s11227-017-2189-1 Zhang, 2017, Early air pollution forecasting as a service: An ensemble learning approach, 636 Cand, 2020, Bioinformatics methods for mass spectrometry-based proteomics data analysis, Int. J. Mol. Sci., 21, 2873, 10.3390/ijms21082873 Yi, 2016, Chemometric methods in data processing of mass spectrometry-based metabolomics: A review, Anal. Chim. Acta, 914, 17, 10.1016/j.aca.2016.02.001 Horai, 2010, MassBank: a public repository for sharing mass spectral data for life sciences, J. Mass Spectrom., 45, 703, 10.1002/jms.1777 Guitton, 2017, Create, run, share, publish, and reference your LC–MS, FIA–MS, GC–MS, and NMR data analysis workflows with the Workflow4Metabolomics 3.0 galaxy online infrastructure for metabolomics, Int. J. Biochem. Cell Biol., 93, 89, 10.1016/j.biocel.2017.07.002 Wang, 2016, Sharing and community curation of mass spectrometry data with global natural products social molecular networking, Nature Biotechnol., 34, 10.1038/nbt.3597 2019 Alfieri, 2004, VOMS, an authorization system for virtual organizations, 33 Munke, 2022, Data system and data management in a federation of HPC/Cloud centers, 60 European Open Science Cloud Partnership, 2023 Commission, 2020