Tổng quan về các kết quả đối với các bài toán Venttsel phi tuyến

D. E. Apushkinskaya1, A. I. Nazarov2
1St. Petersburg State University of Architecture and Civil Engineering, St. Petersburg, Russia
2St. Petersburg State University, St. Petersburg, Russia

Tóm tắt

Chúng tôi xem xét các kết quả gần đây liên quan đến các bài toán giá trị biên với các điều kiện biên được cho bởi các toán tử tích phân - vi phân bậc hai. Chúng tôi đặc biệt chú ý đến các bài toán phi tuyến (không có các hạng tử tích phân trong các điều kiện biên) cho các phương trình elip và parabol. Đối với các bài toán này, chúng tôi đưa ra một số tuyên bố liên quan đến các ước lượng a priori và các định lý tồn tại trong không gian Sobolev và không gian Hölder.

Từ khóa

#Bài toán Venttsel #phương trình phi tuyến #điều kiện biên #không gian Sobolev #không gian Hölder

Tài liệu tham khảo

D. E. Apushkinskaya: An estimate for the maximum of solutions of parabolic equations with the Venttsel condition. Vestnik Leningrad Univ. Mat. Mekh. Astronom. (1991), 3-12; English transl. Vestnik Leningrad Univ. Math. 24 (1991), 1–11. D. E. Apushkinskaya, A. I. Nazarov: Gradient estimates for solutions of stationary degenerate Venttsel problems I. Research rep. no. MRR 058-97, Austral. Nat. Univ., Centre for Math. Anal. (1997). D. E. Apushkinskaya, A. I. Nazarov: Gradient estimates for solutions of stationary degenerate Venttsel problems II. Research rep. no. MRR 019-98, Austral. Nat. Univ., Centre for Math. Anal. (1998). D. E. Apushkinskaya, A. I. Nazarov: Gradient estimates for solutions of stationary degenerate Venttsel problems. Probl. Mat. Anal. 18 (1998), 43-69. D. E. Apushkinskaya, A. I. Nazarov: Hölder estimates of solutions to degenerate Venttsel boundary value problems for parabolic and elliptic equations of nondivergent form. Probl. Mat. Anal. 17 (1997), 3-18. D. E. Apushkinskaya, A. I. Nazarov: Hölder estimates of solutions to initial-boundary value problems for parabolic equations of nondivergent form with Wentzel (Venttsel) boundary condition. Amer. Math. Soc. Transl. (2) 64 (1995), 1-13. D. E. Apushkinskaya, A. I. Nazarov: On the quasilinear stationary Venttsel problem. Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 221 (1995), 20-29. D. E. Apushkinskaya, A. I. Nazarov: The initial-boundary value problem for nondivergent parabolic equation with Venttsel boundary condition. Algebra Anal. 6 (1994), 1-29; English transl. St. Petersburg Math. J. 6 (1995), 1127–1149. D. E. Apushkinskaya, A. I. Nazarov: The nonstationary Venttsel problem with quadratic growth with respect to the gradient. Probl. Mat. Anal. 15 (1995), 33-46; English transl. J. Math. Sciences 80 (1996), 2197–2207. J. R. Cannon, G. H. Meyer: On diffusion in a fractured medium. SIAM J. Appl. Math. 3 (1971), 434-448. E. I. Galakhov, A. L. Skubachevskii: On shrinking nonnegative semigroups with nonlocal conditions. Mat. Sb. 165(207) (1998), 45-75. N. Ikeda, S. Watanabe: Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam-New York, Kodansha, Tokyo. P. Korman: Existence of periodic solutions for a class of nonlinear problems. Nonlinear Anal. 7 (1983), 873-879. P. Korman: Existence of solutions for a class of semilinear noncoercive problems. Nonlinear Anal. 10 (1986), 1471-1476. O. A. Ladyzhenskaya, N. N. Uraltseva: A survey of results on the solvability of boundary value problems for uniformly elliptic and parabolic second order quasilinear equations having unbounded singularities. Uspekhi Mat. Nauk 41 (1986), 59-83; English transl. Russian Math. Surveys 41 (1986), 1–31. K. Lemrabet: Ventcel' boundary value problem in a non-smooth domain. C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), 531-534. G. M. Lieberman: Second Order Parabolic Differential Equations. World Scientific, Singapore-New Jersey-London-Hong Kong, 1996. G. M. Lieberman, N. S. Trudinger: Nonlinear oblique boundary value problems for nonlinear elliptic equations. Trans. Am. Math. Soc. 295 (1986), 509-545. V. V. Lukyanov, A. I. Nazarov: A solution of Venttsel problems for the Laplacian and the Helmholtz equation by iterated potentials. Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 250 (1998). Y. Luo: An Aleksandrov-Bakel'man type maximum principle and applications. J. Diff. Eq. 101(2) (1993), 213-231. Y. Luo: Quasilinear second order elliptic equations with elliptic Venttsel boundary conditions. Nonlinear Anal. 16 (1991), 761-769. Y. Luo, N. S. Trudinger: Linear second order elliptic equations with Venttsel boundary conditions. Proc. Roy. Soc. Edinburgh Sect. A 118 (1991), 193-207. A. I. Nazarov: On the estimates of the Hölder constants for solutions of the oblique derivative problem for a parabolic equation. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 163 (1987), 130-131; English transl. J. Soviet Math. 49 (1990), 1202–1203. A. I. Nazarov: Interpolation of linear spaces and maximum estimates for solutions of parabolic equations. Part. Diff. Eq., Acad. Nauk SSSR, Siberian Dep. Math. Inst., Novosibirsk, 1987, pp. 50-72. M. Shinbrot: Water waves over periodic bottoms in three dimensions. J. Inst. Math. Applic. 25 (1980), 367-385. K. S. Tulenbaev, N. N. Uraltseva: Nonlinear boundary value problem for elliptic equations in general form. Part. Diff. Eq., Acad. Nauk SSSR, Siberian Dep. Math. Inst., Novosibirsk, 1987, pp. 95-112. A. D. Venttsel: On boundary conditions for multidimensional diffusion processes. Teor. Veroyatnost. i Primenen. 4 (1959), 172-185; English transl. Theor. Probability Appl. 4 (1959), 164–177. S. Watanabe: Construction of diffusion processes with Venttsel boundary conditions by means of Poisson point processes of Brownian excursions. Probability theory, Banach center Publ., vol. 5, PWN, Warsaw, 1979, pp. 255-271.