A survey of parameterized algorithms and the complexity of edge modification
Tài liệu tham khảo
Lewis, 1980, The node-deletion problem for hereditary properties is NP-complete, J. Comput. System Sci., 20, 219, 10.1016/0022-0000(80)90060-4
Yannakakis, 1981, Edge-deletion problems, SIAM J. Comput., 10, 297, 10.1137/0210021
Burzyn, 2006, NP-completeness results for edge modification problems, Discrete Appl. Math., 154, 1824, 10.1016/j.dam.2006.03.031
Mancini, 2008
Natanzon, 2001, Complexity classification of some edge modification problems, Discrete Appl. Math., 113, 109, 10.1016/S0166-218X(00)00391-7
Yannakakis, 1981, Computing the minimum fill-in is NP-complete, SIAM J. Algebr. Discrete Methods, 2, 77, 10.1137/0602010
Eswaran, 1976, Augmentation problems, SIAM J. Comput., 5, 653, 10.1137/0205044
Shamir, 2004, Cluster graph modification problems, Discrete Appl. Math., 144, 173, 10.1016/j.dam.2004.01.007
Hammer, 1981, The splittance of a graph, Combinatorica, 275, 10.1007/BF02579333
Cygan, 2015
Fomin, 2019
Golovach, 2013, Obtaining planarity by contracting few edges, Theoret. Comput. Sci., 476, 38, 10.1016/j.tcs.2012.12.041
Guillemot, 2013, A faster FPT algorithm for bipartite contraction, Inform. Process. Lett., 113, 906, 10.1016/j.ipl.2013.09.004
Guo, 2015, Obtaining split graphs by edge contraction, Theoret. Comput. Sci., 607, 60, 10.1016/j.tcs.2015.01.056
Heggernes, 2013, Obtaining a bipartite graph by contracting few edges, SIAM J. Discrete Math., 27, 2143, 10.1137/130907392
Cai, 2003, Parameterized complexity of vertex colouring, Discrete Appl. Math., 127, 415, 10.1016/S0166-218X(02)00242-1
Downey, 1992, Fixed-parameter tractability and completeness, vol. 87, 161
Flum, 2006
Downey, 2013
Grohe, 2007, Logic, graphs, and algorithms
Niedermeier, 2006, Invitation to fixed-parameter algorithms, vol. 31
Bodlaender, 2009, On problems without polynomial kernels, J. Comput. System Sci., 75, 423, 10.1016/j.jcss.2009.04.001
Impagliazzo, 2001, Which problems have strongly exponential complexity?, J. Comput. System Sci., 63, 512, 10.1006/jcss.2001.1774
Golumbic, 1980
Brandstädt, 1999, Graph classes. A survey
Kawarabayashi, 2007, Computing crossing number in linear time, 382
Lokshtanov, 2008, Wheel-free deletion is W[2]-hard, vol. 5018, 141
Guillemot, 2013, On the (non-)existence of polynomial kernels for Pl-free edge modification problems, Algorithmica, 65, 900, 10.1007/s00453-012-9619-5
Cai, 2012
Fomin, 2013, Subexponential parameterized algorithm for minimum fill-in, SIAM J. Comput., 42, 2197, 10.1137/11085390X
Drange, 2015, Exploring the subexponential complexity of completion problems, ACM Trans. Comput. Theory, 7, 14:1, 10.1145/2799640
Drange, 2018, A polynomial kernel for trivially perfect editing, Algorithmica, 80, 3481, 10.1007/s00453-017-0401-6
Cai, 1996, Fixed-parameter tractability of graph modification problems for hereditary properties, Inform. Process. Lett., 58, 171, 10.1016/0020-0190(96)00050-6
Liu, 2014, An overview of kernelization algorithms for graph modification problems, Tsinghua Sci. Technol., 19, 346, 10.1109/TST.2014.6867517
Abu-Khzam, 2010, A kernelization algorithm for d-hitting set, J. Comput. System Sci., 76, 524, 10.1016/j.jcss.2009.09.002
Guo, 2010, A more relaxed model for graph-based data clustering: s-plex cluster editing, SIAM J. Discrete Math., 24, 1662, 10.1137/090767285
Bessy, 2013, Polynomial kernels for proper interval completion and related problems, Inform. and Comput., 231, 89, 10.1016/j.ic.2013.08.006
Drange, 2022, On the threshold of intractability, J. Comput. System Sci., 124, 1, 10.1016/j.jcss.2021.09.003
Bathie, 2022, (Sub)linear kernels for edge modification problems toward structured graph classes, Algorithmica, 84, 3338, 10.1007/s00453-022-00969-1
Cao, 2021, Improved kernels for edge modification problems, vol. 214, 13:1
Dumas, 2021, A cubic vertex-kernel for trivially perfect editing, vol. 202, 45:1
Cygan, 2017, Polynomial kernelization for removing induced claws and diamonds, Theory Comput. Syst., 60, 615, 10.1007/s00224-016-9689-x
Drange, 2015
Chen, 2012, A 2k kernel for the cluster editing problem, J. Comput. System Sci., 78, 211, 10.1016/j.jcss.2011.04.001
Cao, 2012, Cluster editing: Kernelization based on edge cuts, Algorithmica, 64, 152, 10.1007/s00453-011-9595-1
Brügmann, 2009, On generating triangle-free graphs, Electron. Notes Discrete Math., 32, 51, 10.1016/j.endm.2009.02.008
Yuan, 2021, Polynomial kernels for paw-free edge modification problems, Theoret. Comput. Sci., 891, 1, 10.1016/j.tcs.2021.08.015
Eiben, 2020, A polynomial kernel for paw-free editing, vol. 180, 10:1
Sandeep, 2015, Parameterized lower bound and improved kernel for diamond-free edge deletion, vol. 43, 365
Cao, 2022, A polynomial kernel for diamond-free editing, Algorithmica, 84, 197, 10.1007/s00453-021-00891-y
Tsur, 2021, Kernel for Kt-free edge deletion, Inform. Process. Lett., 167, 10.1016/j.ipl.2020.106082
Cai, 2015, Incompressibility of H-free edge modification problems, Algorithmica, 71, 731, 10.1007/s00453-014-9937-x
Guo, 2007, Problem kernels for NP-complete edge deletion problems: Split and related graphs, vol. 4835, 915
Gramm, 2009, Data reduction and exact algorithms for clique cover, ACM J. Exp. Algorithmics, 13, 2.2.2, 10.1145/1412228.1412236
Fellows, 2007, Efficient parameterized preprocessing for cluster editing, vol. 4639, 312
Kratsch, 2013, Two edge modification problems without polynomial kernels, Discrete Optim., 10, 193, 10.1016/j.disopt.2013.02.001
Nastos, 2012, Bounded search tree algorithms for parametrized cograph deletion: Efficient branching rules by exploiting structures of special graph classes, Discrete Math. Algorithms Appl., 4, 10.1142/S1793830912500085
Liu, 2012, Complexity and parameterized algorithms for cograph editing, Theoret. Comput. Sci., 461, 45, 10.1016/j.tcs.2011.11.040
Fellows, 2011, Graph-based data clustering with overlaps, Discrete Optim., 8, 2, 10.1016/j.disopt.2010.09.006
Cygan, 2013
Beineke, 1970, Characterizations of derived graphs, J. Combin. Theory, 9, 129, 10.1016/S0021-9800(70)80019-9
Aravind, 2017, On polynomial kernelization of H-free edge deletion, Algorithmica, 79, 654, 10.1007/s00453-016-0215-y
Böcker, 2013, Cluster editing, vol. 7921, 33
Gramm, 2005, Graph-modeled data clustering: Exact algorithms for clique generation, Theory Comput. Syst., 38, 373, 10.1007/s00224-004-1178-y
Guo, 2009, A more effective linear kernelization for cluster editing, Theoret. Comput. Sci., 410, 718, 10.1016/j.tcs.2008.10.021
Böcker, 2011, Even faster parameterized cluster deletion and cluster editing, Inform. Process. Lett., 111, 717, 10.1016/j.ipl.2011.05.003
Böcker, 2012, A golden ratio parameterized algorithm for cluster editing, J. Discrete Algorithms, 16, 79, 10.1016/j.jda.2012.04.005
van Bevern, 2018, Parameterizing edge modification problems above lower bounds, Theory Comput. Syst., 62, 739, 10.1007/s00224-016-9746-5
Li, 2021, Cluster editing parameterized above modification-disjoint P3-packings, vol. 187, 49:1
Xia, 2012, Kernelization for cycle transversal problems, Discrete Appl. Math., 160, 1224, 10.1016/j.dam.2011.12.024
Liu, 2015, Edge deletion problems: Branching facilitated by modular decomposition, Theoret. Comput. Sci., 573, 63, 10.1016/j.tcs.2015.01.049
Ghosh, 2015, Faster parameterized algorithms for deletion to split graphs, Algorithmica, 71, 989, 10.1007/s00453-013-9837-5
Nastos, 2013, Familial groups in social networks, Social Networks, 35, 439, 10.1016/j.socnet.2013.05.001
Kaplan, 1999, Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs, SIAM J. Comput., 28, 1906, 10.1137/S0097539796303044
Natanzon, 2000, A polynomial approximation algorithm for the minimum fill-in problem, SIAM J. Comput., 30, 1067, 10.1137/S0097539798336073
Agrawal, 2019, Feedback vertex set inspired kernel for chordal vertex deletion, ACM Trans. Algorithms, 15, 11:1, 10.1145/3284356
Jansen, 2018, Approximation and kernelization for chordal vertex deletion, SIAM J. Discrete Math., 32, 2258, 10.1137/17M112035X
Cao, 2016, Chordal editing is fixed-parameter tractable, Algorithmica, 75, 118, 10.1007/s00453-015-0014-x
Marx, 2010, Chordal deletion is fixed-parameter tractable, Algorithmica, 57, 747, 10.1007/s00453-008-9233-8
Villanger, 2009, Interval completion is fixed parameter tractable, SIAM J. Comput., 38, 2007, 10.1137/070710913
Cao, 2013
Cao, 2016, Linear recognition of almost interval graphs, 1096
Bliznets, 2018, Subexponential parameterized algorithm for interval completion, ACM Trans. Algorithms, 14, 35:1, 10.1145/3186896
Agrawal, 2019, Interval vertex deletion admits a polynomial kernel, 1711
Cao, 2015, Interval deletion is fixed-parameter tractable, ACM Trans. Algorithms, 11, 21:1, 10.1145/2629595
Liu, 2015, An effective branching strategy based on structural relationship among multiple forbidden induced subgraphs, J. Comb. Optim., 29, 257, 10.1007/s10878-014-9733-1
Nishimura, 2002, On graph powers for leaf-labeled trees, J. Algorithms, 42, 69, 10.1006/jagm.2001.1195
Dom, 2006, Error compensation in leaf power problems, Algorithmica, 44, 363, 10.1007/s00453-005-1180-z
Bessy, 2010, Polynomial kernels for 3-leaf power graph modification problems, Discrete Appl. Math., 158, 1732, 10.1016/j.dam.2010.07.002
Dom, 2005, Extending the tractability border for closest leaf powers, vol. 3787, 397
Dom, 2008, Closest 4-leaf power is fixed-parameter tractable, Discrete Appl. Math., 156, 3345, 10.1016/j.dam.2008.01.007
Dumas, 2021, Polynomial kernels for strictly chordal edge modification problems, vol. 214, 17:1
Crespelle, 2021, Completion to chordal distance-hereditary graphs: A quartic vertex-kernel, vol. 12911, 156
Courcelle, 2001, On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic, Discrete Appl. Math., 108, 23, 10.1016/S0166-218X(00)00221-3
Kim, 2021, A polynomial kernel for distance-hereditary vertex deletion, Algorithmica, 83, 2096, 10.1007/s00453-021-00820-z
Robertson, 2004, Graph minors. XX. Wagner’s conjecture, J. Combin. Theory Ser. B, 92, 325, 10.1016/j.jctb.2004.08.001
Robertson, 1994, Graph minors. XI. Circuits on a surface, J. Combin. Theory Ser. B, 60, 72, 10.1006/jctb.1994.1007
Adler, 2008, Computing excluded minors, 641
Fomin, 2012, Planar F-deletion: Approximation, kernelization and optimal FPT algorithms, 470
Reed, 2004, Finding odd cycle transversals, Oper. Res. Lett., 32, 299, 10.1016/j.orl.2003.10.009
Wernicke, 2003, On the algorithmic tractability of single nucleotide polymorphism (SNP) analysis and related problems
Guo, 2006, Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization, J. Comput. System Sci., 72, 1386, 10.1016/j.jcss.2006.02.001
Pilipczuk, 2019, Edge bipartization faster than 2k, Algorithmica, 81, 917, 10.1007/s00453-017-0319-z
Kratsch, 2014, Compression via matroids: A randomized polynomial kernel for odd cycle transversal, ACM Trans. Algorithms, 10, 20, 10.1145/2635810
Feng, 2014, Randomized parameterized algorithms for co-path set problem, vol. 8497, 82
van ’t Hof, 2013, Proper interval vertex deletion, Algorithmica, 65, 845, 10.1007/s00453-012-9661-3
Heggernes, 2013, Parameterized complexity of vertex deletion into perfect graph classes, Theoret. Comput. Sci., 511, 172, 10.1016/j.tcs.2012.03.013
Marx, 2012, What’s next? Future directions in parameterized complexity, vol. 7370, 469
Demaine, 2005, Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs, J. ACM, 52, 866, 10.1145/1101821.1101823
Bodlaender, 2008
Alon, 2009, Fast FAST, vol. 5555, 49
Dom, 2010, Fixed-parameter tractability results for feedback set problems in tournaments, J. Discrete Algorithms, 8, 76, 10.1016/j.jda.2009.08.001
Bessy, 2011, Kernels for feedback arc set in tournaments, J. Comput. System Sci., 77, 1071, 10.1016/j.jcss.2010.10.001
Bodlaender, 2011, Faster parameterized algorithms for minimum fill-in, Algorithmica, 61, 817, 10.1007/s00453-010-9421-1
Bouchitté, 2001, Treewidth and minimum fill-in: Grouping the minimal separators, SIAM J. Comput., 31, 212, 10.1137/S0097539799359683
Bouchitté, 2002, Listing all potential maximal cliques of a graph, Theoret. Comput. Sci., 276, 17, 10.1016/S0304-3975(01)00007-X
Fomin, 2008, Exact algorithms for treewidth and minimum fill-in, SIAM J. Comput., 38, 1058, 10.1137/050643350
Komusiewicz, 2012, Cluster editing with locally bounded modifications, Discrete Appl. Math., 160, 2259, 10.1016/j.dam.2012.05.019
Drange, 2015, Fast biclustering by dual parameterization, vol. 43, 402
Bliznets, 2020, Lower bounds for the parameterized complexity of minimum fill-in and other completion problems, ACM Trans. Algorithms, 16, 1, 10.1145/3381426
Damaschke, 2014, Editing simple graphs, J. Graph Algorithms Appl., 18, 557, 10.7155/jgaa.00337
Aravind, 2017, Dichotomy results on the hardness of H-free edge modification problems, SIAM J. Discrete Math., 31, 542, 10.1137/16M1055797
Fomin, 2014, Tight bounds for parameterized complexity of cluster editing with a small number of clusters, J. Comput. System Sci., 80, 1430, 10.1016/j.jcss.2014.04.015
Bliznets, 2015, A subexponential parameterized algorithm for proper interval completion, SIAM J. Discrete Math., 29, 1961, 10.1137/140988565
Bodlaender, 2014, Graph modification problems (Dagstuhl Seminar 14071), Dagstuhl Rep., 4, 38
Borgatti, 2000, Models of core/periphery structures, Social Networks, 21, 375, 10.1016/S0378-8733(99)00019-2
Kovác, 2014, On the clique editing problem, vol. 8635, 469
Meesum, 2016, Reducing rank of the adjacency matrix by graph modification, Theoret. Comput. Sci., 654, 70, 10.1016/j.tcs.2016.02.020
Meesum, 2018, Rank reduction of oriented graphs by vertex and edge deletions, Algorithmica, 80, 2757, 10.1007/s00453-017-0340-2
Cao, 2020, Minimum fill-in: Inapproximability and almost tight lower bounds, Inform. and Comput., 271, 10.1016/j.ic.2020.104514
Cao, 2017, Unit interval editing is fixed-parameter tractable, Inform. and Comput., 253, 109, 10.1016/j.ic.2017.01.008
Bliznets, 2018, Hardness of approximation for H-free edge modification problems, ACM Trans. Comput. Theory, 10, 9:1, 10.1145/3196834
Chen, 2011, Lower bounds for kernelizations and other preprocessing procedures, Theory Comput. Syst., 48, 803, 10.1007/s00224-010-9270-y
Fernau, 2020, Diminishable parameterized problems and strict polynomial kernelization, Computability, 9, 1, 10.3233/COM-180220
Chen, 2006, Minimum-flip supertrees: Complexity and algorithms, IEEE/ACM Trans. Comput. Biol. Bioinform., 3, 165, 10.1109/TCBB.2006.26
Böcker, 2012, Improved fixed-parameter algorithms for minimum-flip consensus trees, ACM Trans. Algorithms, 8, 10.1145/2071379.2071386
Komusiewicz, 2014, A cubic-vertex kernel for flip consensus tree, Algorithmica, 68, 81, 10.1007/s00453-012-9663-1
Guo, 2008, Improved algorithms for bicluster editing, vol. 4978, 445
Tsur, 2021, Faster parameterized algorithm for bicluster editing, Inform. Process. Lett., 168, 10.1016/j.ipl.2021.106095
Fernau, 2005, Two-layer planarization: Improving on parameterized algorithmics, J. Graph Algorithms Appl., 9, 205, 10.7155/jgaa.00106
Fernau, 2014, Social choice meets graph drawing: how to get subexponential time algorithms for ranking and drawing problems, Tsinghua Sci. Technol., 19, 374, 10.1109/TST.2014.6867519
Kobayashi, 2015, A fast and simple subexponential fixed parameter algorithm for one-sided crossing minimization, Algorithmica, 72, 778, 10.1007/s00453-014-9872-x
Zehavi, 2022, Parameterized analysis and crossing minimization problems, Comp. Sci. Rev., 45
Lokshtanov, 2014, Faster parameterized algorithms using linear programming, ACM Trans. Algorithms, 11, 15, 10.1145/2566616
Cygan, 2013
Majumdar, 2019, Tractability of Kőnig edge deletion problems, Theoret. Comput. Sci., 796, 207, 10.1016/j.tcs.2019.09.011
Bock, 2015, Finding small stabilizers for unstable graphs, Math. Program., 154, 173, 10.1007/s10107-014-0854-1
Jr., 1956, Maximal flow through a network, Canad. J. Math., 8, 399, 10.4153/CJM-1956-045-5
Dahlhaus, 1994, The complexity of multiterminal cuts, SIAM J. Comput., 23, 864, 10.1137/S0097539792225297
Marx, 2006, Parameterized graph separation problems, Theoret. Comput. Sci., 351, 394, 10.1016/j.tcs.2005.10.007
Xiao, 2010, Simple and improved parameterized algorithms for multiterminal cuts, Theory Comput. Syst., 46, 723, 10.1007/s00224-009-9215-5
Cao, 2014, An O∗(1.84k) parameterized algorithm for the multiterminal cut problem, Inform. Process. Lett., 114, 167, 10.1016/j.ipl.2013.12.001
Klein, 2012, Solving planar k-terminal cut in O(nck) time, vol. 7391, 569
Lokshtanov, 2012, Parameterized tractability of multiway cut with parity constraints, vol. 7391, 750
Chandrasekaran, 2020, Odd multiway cut in directed acyclic graphs, SIAM J. Discrete Math., 34, 1385, 10.1137/18M1176087
Chitnis, 2013, Fixed-parameter tractability of directed multiway cut parameterized by the size of the cutset, SIAM J. Comput., 42, 1674, 10.1137/12086217X
Chen, 2008, A fixed-parameter algorithm for the directed feedback vertex set problem, J. ACM, 55, 10.1145/1411509.1411511
Even, 1998, Approximating minimum feedback sets and multicuts in directed graphs, Algorithmica, 20, 151, 10.1007/PL00009191
Chitnis, 2015, Directed subset feedback vertex set is fixed-parameter tractable, ACM Trans. Algorithms, 11, 28, 10.1145/2700209
Xiao, 2012, An FPT algorithm for edge subset feedback edge set, Inform. Process. Lett., 112, 5, 10.1016/j.ipl.2011.10.007
Kratsch, 2020, Multi-budgeted directed cuts, Algorithmica, 82, 2135, 10.1007/s00453-019-00609-1
Claudio, 1978, A minimax theorem for directed graphs, J. Lond. Math. Soc., 2–17, 369
Garg, 1997, Primal–dual approximation algorithms for integral flow and multicut in trees, Algorithmica, 18, 3, 10.1007/BF02523685
Guo, 2005, Fixed-parameter tractability and data reduction for multicut in trees, Networks, 46, 124, 10.1002/net.20081
Bousquet, 2018, Multicut is FPT, SIAM J. Comput., 47, 166, 10.1137/140961808
Marx, 2014, Fixed-parameter tractability of multicut parameterized by the size of the cutset, SIAM J. Comput., 43, 355, 10.1137/110855247
Pilipczuk, 2018, Directed multicut is W[1]-hard, even for four terminal pairs, ACM Trans. Comput. Theory, 10, 1, 10.1145/3201775
Kratsch, 2015, Fixed-parameter tractability of multicut in directed acyclic graphs, SIAM J. Discrete Math., 29, 122, 10.1137/120904202
Chitnis, 2019, FPT inapproximability of directed cut and connectivity problems, vol. 148, 8:1
Bringmann, 2016, Parameterized complexity dichotomy for Steiner Multicut, J. Comput. System Sci., 82, 1020, 10.1016/j.jcss.2016.03.003
Golovach, 2011, Paths of bounded length and their cuts: Parameterized complexity and algorithms, Discrete Optim., 8, 72, 10.1016/j.disopt.2010.09.009
Fluschnik, 2018, Fractals for kernelization lower bounds, SIAM J. Discrete Math., 32, 656, 10.1137/16M1088740
Dvorák, 2018, Parameterized complexity of length-bounded cuts and multicuts, Algorithmica, 80, 3597, 10.1007/s00453-018-0408-7
Bazgan, 2019, A more fine-grained complexity analysis of finding the most vital edges for undirected shortest paths, Networks, 73, 23, 10.1002/net.21832
Bentert, 2022, Length-bounded cuts: Proper interval graphs and structural parameters, J. Comput. System Sci., 126, 21, 10.1016/j.jcss.2021.12.002
Kolman, 2018, On algorithms employing treewidth for L-bounded cut problems, J. Graph Algorithms Appl., 22, 177, 10.7155/jgaa.00462
Fan, 2022, Metric violation distance: Hardness and approximation, Algorithmica, 84, 1441, 10.1007/s00453-022-00940-0
Fan, 2018
Fan, 2020, Generalized metric repair on graphs, vol. 162, 25:1
Lokshtanov, 2013, Clustering with local restrictions, Inform. and Comput., 222, 278, 10.1016/j.ic.2012.10.016
Fomin, 2013, On the parameterized complexity of cutting a few vertices from a graph, vol. 8087, 421
Cygan, 2019, Minimum bisection is fixed-parameter tractable, SIAM J. Comput., 48, 417, 10.1137/140988553
van Bevern, 2013, On the parameterized complexity of computing graph bisections, vol. 8165, 76
Kim, 2017, Parameterized algorithms for min–max multiway cut and list digraph homomorphism, J. Comput. System Sci., 86, 191, 10.1016/j.jcss.2017.01.003
Chitnis, 2017, List H-coloring a graph by removing few vertices, Algorithmica, 78, 110, 10.1007/s00453-016-0139-6
Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, Magnus Wahlström, Directed flow-augmentation, in: Proceedings of the 54th Annual ACM Symposium on Theory of Computing (STOC), 2022, pp. 938–947.
Downey, 2003, Cutting up is hard to do: the parameterised complexity of k-cut and related problems, Electron. Notes Theor. Comput. Sci., 78, 209, 10.1016/S1571-0661(04)81014-4
ichi Kawarabayashi, 2011, The minimum k-way cut of bounded size is fixed-parameter tractable, 160
Marx, 2013, Finding small separators in linear time via treewidth reduction, ACM Trans. Algorithms, 9, 30:1, 10.1145/2500119
Komusiewicz, 2020, Matching cut: Kernelization, single-exponential time FPT, and exact exponential algorithms, Discrete Appl. Math., 283, 44, 10.1016/j.dam.2019.12.010
Gomes, 2021, Finding cuts of bounded degree: Complexity, FPT and exact algorithms, and kernelization, Algorithmica, 83, 1677, 10.1007/s00453-021-00798-8
Ray, 1994, Computational complexity of weighted integrity, J. Combin. Math. Combin. Comput., 16, 65
Drange, 2016, On the computational complexity of vertex integrity and component order connectivity, Algorithmica, 76, 1181, 10.1007/s00453-016-0127-x
Gross, 2013, A survey of component order connectivity models of graph theoretic networks, WSEAS Trans. Math., 12, 895
Clark, 1987, Computational complexity of integrity, J. Combin. Math. Combin. Comput., 2, 179
Fellows, 1989, Forbidden subgraphs and the complexity of network integrity, J. Combin. Math. Combin. Comput., 6, 23
Barefoot, 1987, Vulnerability in graphs — a comparative survey, J. Combin. Math. Combin. Comput., 1, 13
Bang-Jensen, 2022, Component order connectivity in directed graphs, Algorithmica, 84, 2767, 10.1007/s00453-022-01004-z
Bagga, 1994, Edge-integrity: a survey, Discrete Math., 124, 3, 10.1016/0012-365X(94)90084-1
Kratsch, 1997, Measuring the vulnerability for classes of intersection graphs, Discrete Appl. Math., 77, 259, 10.1016/S0166-218X(96)00133-3
Watanabe, 1987, Edge-connectivity augmentation problems, J. Comput. System Sci., 35, 96, 10.1016/0022-0000(87)90038-9
Cai, 1989, The minimum augmentation of any graph to a k-edge-connected graph, Networks, 19, 151, 10.1002/net.3230190112
Frank, 1992, Augmenting graphs to meet edge-connectivity requirements, SIAM J. Discrete Math., 5, 25, 10.1137/0405003
Vegh, 2011, Augmenting undirected node-connectivity by one, SIAM J. Discrete Math., 25, 695, 10.1137/100787507
Jackson, 2005, Independence free graphs and vertex connectivity augmentation, J. Combin. Theory Ser. B, 94, 31, 10.1016/j.jctb.2004.01.004
Nagamochi, 2003, An approximation for finding a smallest 2-edge-connected subgraph containing a specified spanning tree, Discrete Appl. Math., 126, 83, 10.1016/S0166-218X(02)00218-4
Guo, 2010, Kernelization and complexity results for connectivity augmentation problems, Networks, 56, 131
Marx, 2015, Fixed-parameter algorithms for minimum-cost edge-connectivity augmentation, ACM Trans. Algorithms, 11, 27, 10.1145/2700210
Basavaraju, 2014, Parameterized algorithms to preserve connectivity, vol. 8572, 800
Hüffner, 2015, Finding highly connected subgraphs, vol. 8939, 254
Adler, 2016, Planar disjoint-paths completion, Algorithmica, 76, 401, 10.1007/s00453-015-0046-2
Gutin, 2019, Path-contractions, edge deletions and connectivity preservation, J. Comput. System Sci., 101, 1, 10.1016/j.jcss.2018.10.001
Liu, 2012, On editing graphs into 2-club clusters, vol. 7285, 235
Abu-Khzam, 2017, On the complexity of multi-parameterized cluster editing, J. Discrete Algorithms, 45, 26, 10.1016/j.jda.2017.07.003
Misra, 2020, Subexponential algorithm for d-cluster edge deletion: Exception or rule?, J. Comput. System Sci., 113, 150, 10.1016/j.jcss.2020.05.008
Hüffner, 2014, Partitioning biological networks into highly connected clusters with maximum edge coverage, IEEE/ACM Trans. Comput. Biol. Bioinform., 11, 455, 10.1109/TCBB.2013.177
Bliznets, 2017, Parameterized algorithms for partitioning graphs into highly connected clusters, vol. 83, 6:1
Golovach, 2019, Clustering to given connectivities, vol. 115, 17:1
Böcker, 2009, Going weighted: Parameterized algorithms for cluster editing, Theoret. Comput. Sci., 410, 5467, 10.1016/j.tcs.2009.05.006
Luo, 2021, Parameterized dynamic cluster editing, Algorithmica, 83, 1, 10.1007/s00453-020-00746-y
Chen, 2018, Cluster editing in multi-layer and temporal graphs, vol. 123, 24:1
Bocci, 2022, A new temporal interpretation of cluster editing, vol. 13270, 214
Moser, 2009, Parameterized complexity of finding regular induced subgraphs, J. Discrete Algorithms, 7, 181, 10.1016/j.jda.2008.09.005
Mathieson, 2012, Editing graphs to satisfy degree constraints: A parameterized approach, J. Comput. System Sci., 78, 179, 10.1016/j.jcss.2011.02.001
Garey, 1979
Stewart, 1994, Deciding whether a planar graph has a cubic subgraph is NP-complete, Discrete Math., 126, 349, 10.1016/0012-365X(94)90277-1
Stewart, 1996, Finding regular subgraphs in both arbitrary and planar graphs, Discrete Appl. Math., 68, 223, 10.1016/0166-218X(95)00061-U
Stewart, 1997, On locating cubic subgraphs in bounded-degree connected bipartite graphs, Discrete Math., 163, 319, 10.1016/0012-365X(95)00324-P
Mathieson, 2009
Frick, 2001, Deciding first-order properties of locally tree-decomposable structures, J. ACM, 48, 1184, 10.1145/504794.504798
Bulian, 2017, Fixed-parameter tractable distances to sparse graph classes, Algorithmica, 79, 139, 10.1007/s00453-016-0235-7
Golovach, 2015, Editing to a graph of given degrees, Theoret. Comput. Sci., 591, 72, 10.1016/j.tcs.2015.04.034
Froese, 2016, Win-win kernelization for degree sequence completion problems, J. Comput. System Sci., 82, 1100, 10.1016/j.jcss.2016.03.009
Dabrowski, 2017, Editing to a planar graph of given degrees, J. Comput. System Sci., 85, 168, 10.1016/j.jcss.2016.11.009
Golovach, 2017, Editing to a connected graph of given degrees, Inform. and Comput., 256, 131, 10.1016/j.ic.2017.04.013
Deborah, 2002, Optimal Hamiltonian completions and path covers for trees, and a reduction to maximum flow, ANZIAM J., 44, 193, 10.1017/S1446181100013894
Moran, 1991, Optimal covering of cacti by vertex-disjoint paths, Theoret. Comput. Sci., 84, 179, 10.1016/0304-3975(91)90159-Y
Fomin, 2019, Editing to connected F-degree graph, SIAM J. Discrete Math., 33, 795, 10.1137/17M1129428
Haarberg, 2019
Bredereck, 2019, A parameterized algorithmics framework for degree sequence completion problems in directed graphs, Algorithmica, 81, 1584, 10.1007/s00453-018-0494-6
Mathieson, 2017, Graph editing problems with extended regularity constraints, Theoret. Comput. Sci., 677, 56, 10.1016/j.tcs.2017.03.019
Bodlaender, 2016, (Meta) kernelization, J. ACM, 63, 44:1, 10.1145/2973749
Boesch, 1977, The spanning subgraphs of Eulerian graphs, J. Graph Theory, 1, 79, 10.1002/jgt.3190010115
Lesniak, 1986, An Eulerian exposition, J. Graph Theory, 10, 277, 10.1002/jgt.3190100306
Dorn, 2013, Efficient algorithms for Eulerian extension and rural postman, SIAM J. Discrete Math., 27, 75, 10.1137/110834810
Diestel, 2012, Graph theory, vol. 173
Dabrowski, 2016, Editing to Eulerian graphs, J. Comput. System Sci., 82, 213, 10.1016/j.jcss.2015.10.003
Cai, 2011, Parameterized complexity of even/odd subgraph problems, J. Discrete Algorithms, 9, 231, 10.1016/j.jda.2011.03.004
Cygan, 2014, Parameterized complexity of Eulerian deletion problems, Algorithmica, 68, 41, 10.1007/s00453-012-9667-x
Goyal, 2018, Finding even subgraphs even faster, J. Comput. System Sci., 97, 1, 10.1016/j.jcss.2018.03.001
Cechlárová, 2010, Computing the deficiency of housing markets with duplicate houses, vol. 6478, 72
Crowston, 2012, Parameterized Eulerian strong component arc deletion problem on tournaments, Inform. Process. Lett., 112, 249, 10.1016/j.ipl.2011.11.014
Höhn, 2012, On Eulerian extensions and their application to no-wait flowshop scheduling, J. Sched., 15, 295, 10.1007/s10951-011-0241-1
Sorge, 2011, From few components to an Eulerian graph by adding arcs, vol. 6986, 307
Sorge, 2012, A new view on rural postman based on Eulerian extension and matching, J. Discrete Algorithms, 16, 12, 10.1016/j.jda.2012.04.007
Zheleva, 2011, Social network data analytics, 277
Casas-Roma, 2017, A survey of graph-modification techniques for privacy-preserving on networks, J. Artificial Intelligence Res., 47, 341
Bazgan, 2016, Finding large degree-anonymous subgraphs is hard, Theoret. Comput. Sci., 622, 90, 10.1016/j.tcs.2016.02.004
Demaine, 2019, Structural sparsity of complex networks: Bounded expansion in random models and real-world graphs, J. Comput. System Sci., 105, 199, 10.1016/j.jcss.2019.05.004
Hartung, 2015, A refined complexity analysis of degree anonymization in graphs, Inform. and Comput., 243, 249, 10.1016/j.ic.2014.12.017
Bredereck, 2015, The complexity of degree anonymization by vertex addition, Theoret. Comput. Sci., 607, 16, 10.1016/j.tcs.2015.07.004
Talmon, 2017, The complexity of degree anonymization by graph contractions, Inform. and Comput., 256, 212, 10.1016/j.ic.2017.07.007
Golovach, 2017, Graph editing to a given degree sequence, Theoret. Comput. Sci., 665, 1, 10.1016/j.tcs.2016.12.007
Hartung, 2015, NP-hardness and fixed-parameter tractability of realizing degree sequences with directed acyclic graphs, SIAM J. Discrete Math., 29, 1931, 10.1137/130935756
Seidman, 1983, Network structure and minimum degree, Social Networks, 5, 269, 10.1016/0378-8733(83)90028-X
Chitnis, 2018, Can we create large k-cores by adding few edges?, vol. 10846, 78
Li, 1992, On the minimum-cardinality-bounded-diameter and the bounded-cardinality-minimum-diameter edge addition problems, Oper. Res. Lett., 11, 303, 10.1016/0167-6377(92)90007-P
Gao, 2013, The parametric complexity of graph diameter augmentation, Discrete Appl. Math., 161, 1626, 10.1016/j.dam.2013.01.016
Frati, 2015, Augmenting graphs to minimize the diameter, Algorithmica, 72, 995, 10.1007/s00453-014-9886-4
Dejter, 1993, Improving the diameter of a planar graph, Manuscript
Robertson, 1995, Graph minors. XIII. The disjoint paths problem, J. Combin. Theory Ser. B, 63, 65, 10.1006/jctb.1995.1006
Lokshtanov, 2019, A strongly-uniform slicewise polynomial-time algorithm for the embedded planar diameter improvement problem, vol. 115, 25:1
Cohen, 2017, A polynomial-time algorithm for outerplanar diameter improvement, J. Comput. System Sci., 89, 315, 10.1016/j.jcss.2017.05.016
Golovach, 2015, Variants of plane diameter completion, vol. 43, 30
Kratochvíl, 1992, On the computational complexity of seidel’s switching, vol. 51, 161
Jelínková, 2011, Parameterized problems related to Seidel’s switching, Discrete Math. Theor. Comput. Sci., 13, 19
Kotzig, 1968, Eulerian lines in finite 4-valent graphs and their transformations, 219
Oum, 2005, Rank-width and vertex-minors, J. Combin. Theory Ser. B, 95, 79, 10.1016/j.jctb.2005.03.003
Cattanéo, 2015, Minimum degree up to local complementation: Bounds, parameterized complexity, and exact algorithms, vol. 9472, 259
Fomin, 2018, Partial complementation of graphs, vol. 101, 21:1
Fomin, 2018, Structured connectivity augmentation, SIAM J. Discrete Math., 32, 2612, 10.1137/17M1146233
Fomin, 2019, Modification to planarity is fixed parameter tractable, vol. 126, 28:1
Bose, 2009, Flips in planar graphs, Comput. Geom., 42, 60, 10.1016/j.comgeo.2008.04.001
Lubiw, 2015, Flip distance between two triangulations of a point set is NP-complete, Comput. Geom., 49, 17, 10.1016/j.comgeo.2014.11.001
Pilz, 2014, Flip distance between triangulations of a planar point set is APX-hard, Comput. Geom., 47, 589, 10.1016/j.comgeo.2014.01.001
Hanke, 1996, The edge-flipping distance of triangulations, J. UCS, 2, 570
Cleary, 2009, Rotation distance is fixed-parameter tractable, Inform. Process. Lett., 109, 918, 10.1016/j.ipl.2009.04.023
Sleator, 1988, Rotation distance, triangulations, and hyperbolic geometry, AMS J. Am. Math. Soc., 1, 647, 10.1090/S0894-0347-1988-0928904-4
Lucas, 2010, An improved kernel size for rotation distance in binary trees, Inform. Process. Lett., 110, 481, 10.1016/j.ipl.2010.04.022
Kanj, 2017, Computing the flip distance between triangulations, Discrete Comput. Geom., 58, 313, 10.1007/s00454-017-9867-x
Feng, 2021, An improved FPT algorithm for the flip distance problem, Inform. and Comput., 281, 10.1016/j.ic.2021.104708
Easley, 2010
Sintos, 2014, Using strong triadic closure to characterize ties in social networks, 1466
Golovach, 2020, Parameterized aspects of strong subgraph closure, Algorithmica, 82, 2006, 10.1007/s00453-020-00684-9
Grüttemeier, 2020, On the relation of strong triadic closure and cluster deletion, Algorithmica, 82, 853, 10.1007/s00453-019-00617-1
Bulteau, 2021, Your rugby mates don’t need to know your colleagues: Triadic closure with edge colors, J. Comput. System Sci., 120, 75, 10.1016/j.jcss.2021.03.001
Grüttemeier, 2021, Destroying bicolored P3s by deleting few edges, Discrete Math. Theor. Comput. Sci., 23
Giannopoulou, 2021, Linear kernels for edge deletion problems to immersion-closed graph classes, SIAM J. Discrete Math., 35, 105, 10.1137/18M1228839
Fomin, 2020, On the parameterized complexity of graph modification to first-order logic properties, Theory Comput. Syst., 64, 251, 10.1007/s00224-019-09938-8