A subluminal relativistic magnetohydrodynamics scheme with ADER-WENO predictor and multidimensional Riemann solver-based corrector
Tài liệu tham khảo
Abgrall, 1994, Approximation du problème de Riemann vraiment multidimensionnel des équations d'Euler par une méthode de type Roe, I: la linéarisation, C.R. Acad. Sci. Ser. I, 319, 499
Abgrall, 1994, Approximation du problème de Riemann vraiment multidimensionnel des équations d'Euler par une méthode de type Roe, II: solution du problème de Riemann approché, C.R. Acad. Sci. Ser. I, 319, 625
Aloy, 1999, GENESIS: a high resolution code for three-dimensional general relativistic hydrodynamics, Astrophys. J. Suppl., 166, 122
Anton, 2010, Relativistic MHD: renormalized eigenvectors and full wave decomposition Riemann solver, Astrophys. J. Suppl., 188, 1, 10.1088/0067-0049/188/1/1
Balsara, 1999, A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. Comput. Phys., 149, 270, 10.1006/jcph.1998.6153
Balsara, 2000, Monotonicity preserving weighted non-oscillatory schemes with increasingly high order of accuracy, J. Comput. Phys., 160, 405, 10.1006/jcph.2000.6443
Balsara, 2001, Total variation diminishing scheme for relativistic magnetohydrodynamics, Astrophys. J. Suppl., 132, 83, 10.1086/318941
Balsara, 2001, Divergence-free adaptive mesh refinement for magnetohydrodynamics, J. Comput. Phys., 174, 614, 10.1006/jcph.2001.6917
Balsara, 2004, Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction, Astrophys. J. Suppl., 151, 149, 10.1086/381377
Balsara, 2009, Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics, J. Comput. Phys., 228, 5040, 10.1016/j.jcp.2009.03.038
Balsara, 2009, Efficient, high-accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics, J. Comput. Phys., 228, 2480, 10.1016/j.jcp.2008.12.003
Balsara, 2010, Multidimensional HLLE Riemann solver, application to Euler and magnetohydrodynamic flows, J. Comput. Phys., 229, 1970, 10.1016/j.jcp.2009.11.018
Balsara, 2012, Self-Adjusting positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics, J. Comput. Phys., 231, 7504, 10.1016/j.jcp.2012.01.032
Balsara, 2012, A two-dimensional HLLC Riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows, J. Comput. Phys., 231, 7476, 10.1016/j.jcp.2011.12.025
Balsara, 2013, Efficient implementation of ADER schemes for Euler and magnetohydrodynamic flow on structured meshes – comparison with Runge–Kutta methods, J. Comput. Phys., 235, 934, 10.1016/j.jcp.2012.04.051
Balsara, 2014, Multidimensional HLL and HLLC Riemann solvers for unstructured meshes – with application to Euler and MHD flows, J. Comput. Phys., 261, 172, 10.1016/j.jcp.2013.12.029
Balsara, 2014, Multidimensional Riemann problem with self-similar internal structure – Part I – application to hyperbolic conservation laws on structured meshes, J. Comput. Phys., 277, 163, 10.1016/j.jcp.2014.07.053
Balsara, 2015, Multidimensional Riemann problem with self-similar internal structure – Part II – application to hyperbolic conservation laws on unstructured meshes, J. Comput. Phys., 287, 269, 10.1016/j.jcp.2014.11.004
Balsara, 2015, Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers, J. Comput. Phys., 299, 687, 10.1016/j.jcp.2015.07.012
Balsara, 2015, Three dimensional HLL Riemann solver for structured meshes; application to Euler and MHD flow, J. Comput. Phys., 295, 1, 10.1016/j.jcp.2015.03.056
Balsara, 2016, A two-dimensional Riemann solver with self-similar sub-structure – alternative formulation based on least squares projection, J. Comput. Phys., 304, 138, 10.1016/j.jcp.2015.10.013
Balsara, 2016, High order accuracy divergence-free scheme for the electrodynamics of relativistic plasmas with multidimensional Riemann solvers, J. Comput. Phys., 10.1016/j.jcp.2016.05.006
Balsara, 2016, Formulating multidimensional Riemann solvers in similarity variables – part III: a multidimensional analogue of the HLLEM Riemann solver for conservative hyperbolic systems, J. Comput. Phys.
Barth, 1990, Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction
Batten, 1997, On the choice of wavespeeds for the HLLC Riemann solver, SIAM J. Sci. Comput., 18, 1553, 10.1137/S1064827593260140
Boscheri, 2014, Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers, J. Comput. Phys., 267, 112, 10.1016/j.jcp.2014.02.023
Boscheri, 2014, High order Lagrangian ADER-WENO schemes on unstructured meshes – application of several node solvers to hydrodynamics and magnetohydrodynamics, Int. J. Numer. Methods Fluids, 76, 737, 10.1002/fld.3947
Brio, 2001, Two-dimensional Riemann solver for Euler equations of gas dynamics, J. Comput. Phys., 167, 177, 10.1006/jcph.2000.6666
Colella, 1984, The piecewise parabolic method (PPM) for gas dynamical simulations, J. Comput. Phys., 54, 174, 10.1016/0021-9991(84)90143-8
Colella, 2008, A limiter for PPM that preserves accuracy at smooth extrema, J. Comput. Phys., 227, 7069, 10.1016/j.jcp.2008.03.034
Del Zanna, 2003, An efficient shock-capturing central-type scheme for multidimensional relativistic flows, Astron. Astrophys., 400, 397, 10.1051/0004-6361:20021641
Del Zanna, 2007, ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics, Astron. Astrophys., 473, 11, 10.1051/0004-6361:20077093
Dumbser, 2008, A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes, J. Comput. Phys., 227, 8209, 10.1016/j.jcp.2008.05.025
Dumbser, 2009, ADER schemes on unstructured meshes for nonconservative hyperbolic systems: applications to geophysical flows, Comput. Fluids, 38, 1731, 10.1016/j.compfluid.2009.03.008
Dumbser, 2011, A simple extension of the Osher Riemann solver to non-conservative hyperbolic systems, J. Sci. Comput., 48, 88
Dumbser, 2016, A new, efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems, J. Comput. Phys., 304, 275, 10.1016/j.jcp.2015.10.014
Einfeldt, 1988, On Godunov-type methods for gas dynamics, SIAM J. Numer. Anal., 25, 294, 10.1137/0725021
Einfeldt, 1991, On Godunov-type methods near low densities, J. Comput. Phys., 92, 273, 10.1016/0021-9991(91)90211-3
Etienne, 2015, IllinoisGRMHD: an open-source, user-friendly GRMHD code for dynamical spacetimes, Class. Quantum Gravity, 32, 10.1088/0264-9381/32/17/175009
Fey, 1998, Multidimensional upwinding 1. The method of transport for solving the Euler equations, J. Comput. Phys., 143, 159, 10.1006/jcph.1998.5958
Fey, 1998, Multidimensional upwinding 2. Decomposition of the Euler equation into advection equation, J. Comput. Phys., 143, 181, 10.1006/jcph.1998.5959
Gammie, 2003, HARM: a numerical scheme for general relativistic magnetohydrodynamics, Astrophys. J., 589, 444, 10.1086/374594
Gardiner, 2005, An unsplit Godunov method for ideal MHD via constrained transport, J. Comput. Phys., 205, 509, 10.1016/j.jcp.2004.11.016
Gardiner, 2008, An unsplit Godunov method for ideal MHD via constrained transport in three dimensions, J. Comput. Phys., 227, 4123, 10.1016/j.jcp.2007.12.017
Giacomazzo, 2007, WhiskyMHD: a new numerical code for general relativistic magnetohydrodynamics, Class. Quantum Gravity, 24, S235, 10.1088/0264-9381/24/12/S16
Giacomazzo, 2006, The exact solution of the Riemann problem in relativistic magnetohydrodynamics, J. Fluid Mech., 562, 223, 10.1017/S0022112006001145
Gilquin, 1993, Multidimensional Riemann problems for linear hyperbolic systems, Notes Numer. Fluid Mech., 43, 284
Gurski, 2004, An HLLC-type approximate Riemann solver for ideal magnetohydrodynamics, SIAM J. Sci. Comput., 25, 2165, 10.1137/S1064827502407962
Honkkila, 2007, HLLC solver for relativistic MHD, J. Comput. Phys., 223, 643, 10.1016/j.jcp.2006.09.027
Jiang, 1996, Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202, 10.1006/jcph.1996.0130
Kim, 2014, A stable HLLC Riemann solver for relativistic magnetohydrodynamics, J. Comput. Phys., 270, 634, 10.1016/j.jcp.2014.04.023
Komissarov, 1999, A Godunov-type scheme for relativistic MHD, Mon. Not. R. Astron. Soc., 303, 343, 10.1046/j.1365-8711.1999.02244.x
Komissarov, 2006, On some recent developments in numerical methods for relativistic MHD, AIP Conf. Proc., 856, 129, 10.1063/1.2356388
Li, 2005, An HLLC Riemann solver for magnetohydrodynamics, J. Comput. Phys., 203, 344, 10.1016/j.jcp.2004.08.020
Meadows, 1989
McCorquodale, 2011, A high order finite volume method for conservation laws on locally refined grids, Commun. Appl. Math. Comput. Sci., 6, 1, 10.2140/camcos.2011.6.1
McKinney, 2014, Three-dimensional general relativistic radiation magnetohydrodynamical simulation of super-Eddington accretion, using a new code HARMRAD with M1 closure, Mon. Not. R. Astron. Soc., 441, 3177, 10.1093/mnras/stu762
Mignone, 2006, An HLLC Riemann solver for relativistic flows II – magnetohydrodynamics, Mon. Not. R. Astron. Soc., 368, 1040, 10.1111/j.1365-2966.2006.10162.x
Mignone, 2009, A five-wave HLL Riemann solver for relativistic MHD, Mon. Not. R. Astron. Soc., 393, 1141, 10.1111/j.1365-2966.2008.14221.x
Miyoshi, 2005, A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics, J. Comput. Phys., 208, 315, 10.1016/j.jcp.2005.02.017
Osher, 1982, Upwind difference schemes for hyperbolic systems of conservation laws, Math. Comput., 38, 339, 10.1090/S0025-5718-1982-0645656-0
Pao, 1981
Roe, 1981, Approximate Riemann solver, parameter vectors and difference schemes, J. Comput. Phys., 43, 357, 10.1016/0021-9991(81)90128-5
Ryu, 2006, Equation of state in numerical relativistic hydrodynamics, Astrophys. J. Suppl., 166, 410, 10.1086/505937
Schulz-Rinne, 1993, Numerical solution of the Riemann problem for two-dimensional gas dynamics, SIAM J. Sci. Comput., 14, 1394, 10.1137/0914082
Tchekhovskoy, 2007, WHAM: a WENO-based general relativistic numerical scheme – I. Hydrodynamics, Mon. Not. R. Astron. Soc., 379, 469, 10.1111/j.1365-2966.2007.11876.x
Titarev, 2002, ADER: arbitrary high order Godunov approach, J. Sci. Comput., 17, 609, 10.1023/A:1015126814947
Titarev, 2005, ADER schemes for three-dimensional nonlinear hyperbolic systems, J. Comput. Phys., 204, 715, 10.1016/j.jcp.2004.10.028
Toro, 2002, Solution of the generalized Riemann problem for advection reaction equations, Proc. R. Soc. Lond. Ser. A, 458, 271, 10.1098/rspa.2001.0926
Toro, 1994, Restoration of the contact surface in the Harten–Lax–van Leer Riemann solver, Shock Waves, 4, 25, 10.1007/BF01414629
Vides, 2015, A simple two-dimensional extension of the HLL Riemann solver for hyperbolic conservation laws, J. Comput. Phys., 280, 643, 10.1016/j.jcp.2014.10.013
Wendroff, 1999, A two-dimensional HLLE Riemann solver and associated Godunov-type difference scheme for gas dynamics, Comput. Math. Appl., 38, 175, 10.1016/S0898-1221(99)00296-5
Zanotti, 2016, Efficient conservative ADER schemes based on WENO reconstruction and space–time predictor in primitive variables, Comput. Astrophys. Cosmol., 3, 1, 10.1186/s40668-015-0014-x